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ABSTRACT
Similarity-based generalisation is fundamental to human cognition,
and the ability to draw analogies based on relational similarities
between superficially different domains is crucial for reasoning and
inference. Learning to base generalisation on shared relations rather
than (or in the face of) shared perceptual features has been iden-
tified as an important developmental milestone. However, recent
research has highlighted the context-sensitivity of generalisation:
children and adults use perceptual similarity to make inferences in
some cases and relational similarity in others, a finding that sug-
gests people track the predictive validity of different types of infer-
ences. Here we demonstrate that this pattern of behaviour naturally
emerges over the course of development in a domain-general sta-
tistical learningmodel that employs distributed, sub-symbolic repre-
sentations.We suggest that thismodel offers aparsimonious account
of the development of context-sensitive, similarity-based generalisa-
tion and may provide several advantages over other popular struc-
tured or symbolic approaches to modelling relational inference.
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Introduction

Is a lemon more similar to a small yellow balloon or a green grape? The answer, it turns
out, is not so straightforward. All three objects are small and round(ish), but the lemon and
balloon are somewhat larger than the grape and both of them are yellow. On the other
hand, the lemon andgrape are filledwith juice, growon trees, andbelong to the samebasic
category (fruit), while the balloon isman-made and filled with air. Your response, therefore,
may depend onwhat type of similarity (you believe) the questioner has in mind; the lemon
looksmore similar to the yellow balloon but is structurally (and functionally) more similar to
the grape.

Without any additional information, most adults would probably say that the lemon
is more similar to the grape (Deng & Sloutsky, 2016; Gentner, 1988; Goswami & Brown,
1990). The shared taxonomic and structural elements of the lemon and grape trump the
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superficial similarity of the lemon and balloon. However, this relationalmatch requires rela-
tively sophisticated knowledge of lemons and grapes; without it, the lemonwill seemmore
similar to the balloon: a great deal of empirical research has found that young children
typically base similarity judgments on perceptual features before they have the relevant
domain knowledge to make relational matches (Badger & Shapiro, 2012; Gentner & Ratter-
mann, 1998;Hayes&Thompson, 2007; Sloutsky,Deng, Fisher, &Kloos, 2015). In otherwords,
until young children gain sufficient knowledge of fruit, they are likely to say that a lemon
is more similar to a yellow balloon than a grape. This developmental change in similarity
matching–from an early reliance on surface-level, perceptual features to a later reliance on
structural or relational properties–is known as the perceptual-to-relational shift (Gentner,
1988; Goswami, 1996; Piaget, 1952; Rattermann & Gentner, 1998).

Several properties of relational knowledge differentiate relational reasoning from non-
analytic processes (e.g. simple association; Halford, Wilson, & Phillips, 2010). Relational
knowledge is structured (if A is larger than B and B is larger than C, then A must be larger
than C), compositional (A and B retain their identity in the compound representation, A
is larger than B), and systematic (understanding John loves Mary implies the capacity to
understand Mary loves John). Thus, relational knowledge provides a foundation for com-
plex cognitive processes that are a hallmark of human intelligence (Gentner, 1983; Penn,
Holyoak, & Povinelli, 2008).

Computational models have been instrumental in helping us understand the mecha-
nistic underpinnings of relational reasoning (e.g. Falkenhainer, Forbus, & Gentner, 1989;
Hummel & Holyoak, 1997), and the emergence of relational reasoning in children (Doumas,
Hummel, & Sandhofer, 2008; Gentner, Rattermann, Markman, & Kotovsky, 1995; Leech,
Mareschal, & Cooper, 2008; Lu, Wu, & Holyoak, 2019; Morrison, Doumas, & Richland, 2011;
Rogers &McClelland, 2004; Thibodeau, Flusberg, Glick, & Sternberg, 2013). Notably, propo-
nents of two modelling approaches that have been at the forefront of the field (Structure
Mapping Engine – SME – proposed by Falkenhainer et al., 1989; and Learning and Infer-
ence with Schemas and Analogies – LISA – proposed by Hummel & Holyoak, 1997) have
offered somewhat different accounts of the development of relational reasoning and the
developmental trajectory of similarity-based generalisation.

Gentner et al. (1995) used SME to show how conceptual change and knowledge accre-
tion could give rise to the relational shift. On this account, relational reasoning emerges
as domain-specific knowledge increases (Gentner, 1988; Gentner & Rattermann, 1991;
but see Goswami, 1995). In SME, concepts are coded in a predicate calculus that rep-
resents both objects and their relations in a structured, symbolic fashion. Knowledge
accretion is achieved in the model by manually re-coding representations (and not, e.g.
through experiential learning). While this model can accurately capture the perceptual-
to-relational shift in this fashion (i.e. by using “object-centered” representations to model
the performance of younger children and “relation-centered” representations tomodel the
performance of older children and adults), it leaves open the question of how concep-
tual re-representation emerges as people acquire domain knowledge through everyday
experience (for an extended discussion of related issues see Thibodeau et al., 2013).

Morrison et al. (2011) used LISA to show how the development of inhibitory control
mechanisms could support a shift in attention from perceptual to relational structure
during generalisation. On this alternative account, the development of flexible cognitive
control resources is crucial for being able to inhibit the allure of a superficial perceptual
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match. Importantly, and in contrast to SME, the basic principles of LISA have been extended
in an attempt to explain how explicitly structured conceptual representations might be
learned from experience (Discovery of Relations by Analogy – DORA – proposed by Doumas
et al., 2008; see also Doumas, Morrison, & Richland, 2018).

There are clear advantages to both of thesemodelling frameworks, especially since SME
and LISA have been used to simulate such a wide range of findings relating to knowl-
edge representation and reasoning (Gentner & Forbus, 2011; Hummel & Holyoak, 2005).
Using these models to explain the developmental trajectory of relational reasoning, there-
fore, represents a parsimonious extension of each approach that helps explain several key
empirical findings.

However, the reliance on formal representational structure in these models may also
represent a limitation. Computational models that lack formally structured representations
(e.g. Leech et al., 2008; Rogers & McClelland, 2004; Thibodeau et al., 2013) may be bet-
ter suited to explain the context-sensitivity of certain similarity judgments. For instance,
recent findings call into question whether similarity-based generalisation follows a univer-
sal, across-the-board, perceptual-to-relational shift (Bulloch &Opfer, 2009; Opfer & Bulloch,
2007; Tarlowski, 2018). According to the predictive validity view, children do not neces-
sarily proceed from generalisation by perceptual features to generalisation by relational
structure. Instead, they generalise flexibly over different types of similarity depending
on the context of their judgment. In certain domains, children (and adults) will have
learned that inferences based on relational similarity are more reliably predictive of suc-
cess,while in other domains inferencesbasedonperceptual similaritymay actually bemore
successful.

Data supporting the predictive validity view come from studies in which children and
adults are asked to make inferences about a novel object in different contexts (Bulloch &
Opfer, 2009; Opfer & Bulloch, 2007). Consider the triad of insects in Figure 1. In each of the
three insect triplets, there are two adults (AA, BB, and TT) and one juvenile (a, b, and t).
The triads were designed such that the insects on the top row (the “samples”: AA, a; BB, b)
represent potential matches for the insects on the bottom (the “target”: TT, t). In every case,
the target juvenile looked similar to the juvenile from one of the samples (in this case both
b and t are light whereas a is dark) and the target adults looked similar to the adults in the
other sample (in this case both AA and TT are light whereas BB is dark).

Bulloch and Opfer (2009) designed two different conditions to examine whether they
could influence how people would generalise about the target juvenile: one in which the
relational information was relevant (the juvenile is the offspring of the co-occurring adults,
and so should they should share similar properties) and another in which the relational
information was irrelevant (the juvenile is the prey of the co-occurring adults, so they need
not have anything in particular in common). Then they had participants make inferences
about the target juvenile, asking about categorymembership (is t the same kind as a or b?),
an unobservable property (does t have “gogli” inside its blood similar to a or b?), and future
appearance (will t look like a or b in the future?).

According to the predictive validity perspective, in the conditionwhere the relation is rel-
evant (i.e. when theparticipant is told that the juveniles are the offspringof the co-occurring
adults), participants should choose the sample inwhich the adults look like the target adults
(i.e. AA). That is, they should make an inference based on relational similarity. In the con-
text where the relation is irrelevant (i.e. when the participant is told that the juveniles are
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Figure 1. An example trial from Bulloch and Opfer (2009). The target juvenile (t) is perceptually more
similar to (b) but is sometimes presented in a relational context that makes it more similar to (a).

the prey of the co-occurring adults), participants should choose the sample in which the
juvenile looks like the target juvenile (i.e. b). That is, they should make an inference based
on the perceptual similarity of the juveniles.

As expected, Bulloch andOpfer (2009) found that adults based their inferences about the
target juvenile on perceptual properties of the juveniles in the prey context and relational
properties (i.e. the similarity of the adults) in the offspring context. Patterns of results from
three-, four-, and five-year-old children looked increasingly like those of the adults, support-
ing the view that there is not a universal trend from generalising by perceptual features to
generalising by relational structure. Instead, these findings suggest that children and adults
flexibly generalise using features or relationswhen contextually appropriate, basedon their
prior knowledge.1

The present study

While the data provided by Bulloch and Opfer (2009) complicate the traditional picture
of the emergence of relational reasoning over the course of development, we present a
series of neural network simulations that spontaneously capture these findings and help
explain the development of context-sensitive, similarity-based generalisation. The model
architecture and simulated environment build on previous work that has explored the
capacity of certain connectionist networks to capture and explain the development of
semantic knowledge (Rogers & McClelland, 2004) and relational reasoning (e.g. Flusberg,
Thibodeau, Sternberg, & Glick, 2010; Kollias & McClelland, 2013; Lampinen, Hsu, & McClel-
land, 2017; Leech et al., 2008; Thibodeau et al., 2013). This research has shownhowandwhy
higher-level cognitive abilities like analogical reasoning could spontaneously emerge over
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the course of development based on domain-general principles of statistical learning and
distributed representation.

Thepresent simulations advance thisworkby focussing specifically on the relational shift
and the mechanisms that support context-sensitive inferences. The modelling approach
addresses limitations of classical structured and symbolic models like SME while retaining
important insights from the empirical literature (e.g. the causal role that language seems to
play in driving the development of relational reasoning; see Flusberg et al., 2010; Gentner
& Rattermann, 1991; Thibodeau et al., 2013). In particular, our model is naturally context-
sensitive (a well-known strength of connectionist networks; Flusberg & McClelland, 2014;
Rogers & McClelland, 2004) and embodies the key principles underlying the predictive
validity account of similarity-based reasoning.

Simulation

Methods

The environment and structure of ourmodel were designed to replicate some of the essen-
tial features of Bulloch and Opfer’s (2009) study (see Figure 2 for network architecture and
simulationparameters). As input, themodel takes a juvenile insect, presented as distributed
patterns over a 15-unit array (of 0s and 1s), and a relational context, presented symbolically
with a localist representation in a 5-unit array. The patterns that represent the juveniles
were designed to operationalise Bulloch and Opfer’s (2009) manipulation of perceptual
similarity. The 15-unit array allowed for the creation of six “training juveniles” that were
equally different from one another, with slightly negative pairwise correlations (r = −0.2),
and a “test juvenile” thatwas perceptually similar to onepair of “training juveniles” (r = 0.4)
but not the others (r = −0.2; see Figure 3). The symbolic representation of the relational

Figure 2. The network architecture and simulation parameters for the feedforward connectionist
model, which is an adaptation of the Rumelhart network (Rumelhart, 1990). As input the model takes
a distributed representation of a juvenile insect (Subject) in a relational context (Relation). These inputs
feed forward to two hidden layers: in one (Subject Representation) themodel learns an internal represen-
tation of the juvenile insects; in the other (Integration) the model learns to combine the two streams of
input. The pool of Output units in the model include (a) three adult insects who the juvenile could be
“born to,” “eaten by,” and “look like”; (b) three “bug types”; and (c) three “bug properties.”
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Figure 3. Visualisation of the input representation of the juveniles. Pairwise “perceptual” similarity
(overlap of distributed representation) of the six training juveniles is equivalent (r = −.2). Test-juvenile7
is “perceptually” similar to training-juvenile1 and -juvenile2 (r = .4) but equally dissimilar to the others
(juveniles 3-6; r = −.2).

contexts corresponds to the linguistic information that the children were given about the
juveniles or to the questions that the children were asked about the juveniles (e.g. born to,
eaten by, will look like, is, has) by Bulloch and Opfer (2009).

As output, themodel learns to complete the inputswith the appropriate adult, category,
or property, which are also represented symbolically, consistentwith the verbal output that
the children provided in the empirical study. Three of the nine output units represent adult
insects and informwho the juveniles areborn to, eatenby, andwill look like. Theother six out-
put units represent category membership and internal properties of the juveniles (3 each;
see Table 1).

During training, the model learns about six juveniles in each of the five relational con-
texts. That is, the model learns that a given juvenile is born to a pair of (adults1, adults2, or
adults3) adults, is eaten by a pair of (the 3 possible) adults,will look like a pair of (the 3 possi-
ble) adults, is one of three types of bugs (type1, type2, or type3), and has one of three types of
specific properties (property1, property2, or property3). It learns these relationships through

Table 1. Training and Test Patterns.

Subject Relation

Pattern Type Juvenile Born to (adults) Eaten by (adults) Looks like (adults) Is (bug type) Has (property)

Train 1 1 2 1 1 1
Train 2 1 3 1 1 1
Train 3 2 1 2 2 2
Train 4 2 3 2 2 2
Train 5 3 1 3 3 3
Train 6 3 2 3 3 3

Test-relational 7 2 2 2 2
Test-perceptual 7 2 1 1 1

The top six rows represent training patterns and the bottom two represent test patterns. In training, the network learns
about six juvenile bugs in each of five relational contexts for a total of 30 training patterns. At test, the model is given
partial information about a novel juvenile (either who the juvenile was born to, for the “relational” problems or eaten by,
for the “perceptual” problems) and is asked to make inferences about the future appearance, category membership, and
internal properties of that juvenile (predicted inferences shown for test patterns; the model was not given feedback on
the test juvenile’s future appearance, category membership, or internal properties).
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experience: Initial errors are corrected through a supervised learning algorithm (backprop-
agation of error; Hinton, 1986). As connection weights between layers are adjusted, the
model produces the “correct” output for the given input (subject-relation pairing). As a
result, the model’s representations of the juveniles in the two hidden layers (Subject Rep-
resentation and Integration) come to reflect the structure of the environment (e.g. the
relationships between the juveniles and the adults). One of the key features of the model
is that the size of hidden layers is smaller than the size of input and output layers, thereby
forcing themodel to compress what it knows about various juveniles in these overlapping,
distributed representations (see Rogers & McClelland, 2004).

Of note, the model behaves similarly if the Subject Representation hidden layer is
removed and the two streams of input flow directly to the Integration hidden layer (as in a
more straightforward 3-layer feedforward architecture). Including the Subject Representa-
tion hidden layer, however, provides additional information about what the model knows
about the juvenile bugs (see, e.g. Flusberg et al., 2010; Rogers &McClelland, 2004, 2008; Thi-
bodeau et al., 2013). Whereas the Integration layer reflects what the model knows about a
particular juvenile bug in a particular relational context, the Subject Representation layer
reflects the model’s context-independent knowledge of the juvenile bugs.

Thirty training patterns were created: one pattern for each of the six “training juveniles”
in each of the five relational contexts. Themodel was trained for 30,000 epochs with the 30
training patterns. Although this amount of trainingmay seem substantial, it is important to
note that the model starts with absolutely no prior experience. People, on the other hand,
almost alwayshave relevantprior knowledge tobuildon. Recentworkhas shown thatwhen
similar models are given relevant experience to build on, they learn much more quickly
(Thibodeau et al., 2013).

Importantly, there is coherent covariation (Rogers & McClelland, 2004) between the born
to, will look like, is, and has relations. Juveniles will look like, belong to the same category,
and have the same property as the adults that they are born to. In contrast, knowing that a
given juvenile is eaten by a particular pair of adults does not license inferences about future
appearance, category membership, or internal properties.

To test the network’s ability to generalise, it is given partial information about a novel
juvenile after it has learned about the six training juveniles. The pattern that represents
this “test juvenile” was designed to be perceptually similar to one pair of juveniles that the
network learned about in training and relationally similar to another. Perceptual similarity
is operationalised as overlap in the distributed input representations (r = 0.4 between the
novel juvenile and the two perceptually similar juveniles and r = −0.2 between each of
the other juveniles; see Figure 3). That is, juvenile7 was perceptually similar to juvenile1 and
juvenile2 (i.e. in terms of its distributed representation) but relationally similar to juvenile3
and juvenile4 in the sense that it might be born to the same adults as juvenile3 and juvenile4
(see the bottom rows of Table 1).

We presented the network with one of two kinds of inference problems after the train-
ing phase. In one (denoted as “test-relational” Table 1), the network was given the novel
juvenile and information aboutwho that juvenilewasborn to. In theother (denoted as “test-
perceptual” in Table 1), the network was given the novel juvenile and information about
who that juvenile was eaten by. In neither case was the network told what the novel juve-
nile will look like, is, or has. These were inferences that the network was asked to make. In
other words, themodel was given feedback on who the “test juvenile” was born to or eaten
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by in test phase, but not who the “test juvenile” looks like, what type of bug the juvenile is,
or what properties it has.

We presented the novel information (a single pattern) to the network for 1,000 epochs
and monitored the trajectory of its inferences. Simulations were run ten times in each con-
dition, initialisedwith different random startingweights to ensure that results were not the
product of an idiosyncratic network initialisation and to allow for statistical tests.

Our prediction was that the network would initially make inferences about the novel
juvenile that were consistent with the perceptually similar juveniles (i.e. that the network
would infer juvenile7 will look like, is of the same type as, and has the same properties as
juvenile1 and juvenile2), since the distributed patterns representing these juveniles had sig-
nificant overlap. However, we expected that the network would change what it thought
about the novel juvenile in the born to condition (i.e. to infer that juvenile7 is actually more
similar to juvenile3 and juvenile4 because it is also born to adults2); we expected no such
change in the eaten by condition. In other words, we expected the network to behave flexi-
bly, learning to use the relational informationwhen itwas predictive (based on its ownprior
experiences during training) and to ignore it when it was not.

Results

Before looking at the inferences the model made to the test patterns, we investigated
how well the model learned the training patterns. Averaging across the 10 simulations,
we found that cross-entropy error at the end of the training phase was low, M = 16.1,
SD = 9.7, compared to the cross-entropy error at the beginning of the training phase,
M = 262.0, SD = 3.9, t(9) = 76.23, p < .001. This indicates that the model learned to
respond accurately to the training patterns during the training phase.

Then we turned to how the model behaved in the test phase. As predicted, the net-
work initially made perceptual matches when presented with the novel juvenile. Learning
who the novel juvenile was born to, however, led to a shift in the inference patterns of the
model, consistent with a perceptual-to-relational shift. Such a shift did not occur when the
model learnedwho thenovel juvenilewas eatenby, since therewasno coherent covariation
between eaten by and the inferential relational contexts (see Figure 4).

To statistically analyze the inferential tendencies of the model, we conducted three
repeated measures ANOVAs. The first contrasted pre- and post-learning in the offspring
context and found a main effect of perceptual inferences, F(1,35) = 12.61, p < .01, and an
interactionbetween learning and inference type, F(1,35) = 74.54,p < .001. Before learning
(epoch0of test), themodelwas strongly biased towardmakingperceptual inferences. After
learning (epoch 1,000 of test), the network showed a dramatic shift towards relational infer-
ences (see the first and third pairs of bars in Figure 5). That is, themodel initially treated the
novel juvenile like the previously learned, perceptually similar juveniles. But this changed
when it was told that the novel juvenile was born to a different set of parents. Over time, it
automatically re-conceptualized this juvenile to make inferences that were consistent with
the juveniles that were born to the same adults.

The second ANOVA contrasted pre- and post-learning in the prey context and found
a main effect of perceptual inferences, F(1,35) = 60.00, p < .001 and a relatively smaller
but reliable interaction between learning and inference type, F(1,35) = 7.15, p < .05. As in
the offspring condition, the model first made perceptual inferences. Unlike the offspring
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Figure 4. Mean activation of units that represent the “relational” and “perceptual” inference by con-
text. Error bars denote the standard errors of the means. The left panel shows results from the offspring
problems and shows a relational shift: Initially the networkmakes perceptual inferences and latermakes
relational inferences. The right panel shows results from the prey problems and does not show a rela-
tional shift: It makes the same initial inferences as in the offspring condition, which do not change
qualitatively over time.

Figure 5. Mean activations of units that reflect “perceptual” and “relational” inferences before learning
(left), after learning for the prey problems (middle), and after learning for the offspring problems (right).
Error bars denote standard errors of the means.

condition, we did not see a crossover after learning, although it did become slightly more
likely to make a relational inference (see the first two pairs of bars in Figure 5).

Finally, the third ANOVA contrasted the post-learning inferences across the two condi-
tions and found a significant interaction, F(1,35) = 14.50, p < .001. Whereas the network
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made more perceptual matches in the prey condition, it made more relational matches in
the offspring condition (see the second and third pairs of bars in Figure 5).

After analyzing the model’s inferences, we checked whether the learning that occurred
in over the 1,000 epochs of the test phase affected how the model responded to the train-
ing patterns. Wewondered if, for example, the learning that occurred in the test phasemay
have interfered with what themodel had learned in the training phase. We found nomajor
changes in how themodel responded to the training patterns after the test phase. For each
of the training patterns, the output unit that was most strongly activated before the test
phase was also the most strongly activated after the test phase. However, in several cases,
the activation strength of the relevant output unit had decreased to some extent (e.g. from
.97 to .88) and the strength of an irrelevant output unit had increased (e.g. from .02 to .19).
These shifts were reflected in a higher measure of cross-entropy error for the training pat-
terns after the test phase, which rose to M = 42.3, SD = 16.7, t(9) = 2.79, p = .02, after
being tested on offspring problems; and toM = 32.3, SD = 11.1, t(9) = 2.67, p = .02, after
being tested on prey problems.

Discussion

Consistent with Bulloch and Opfer (2009)’s study of similarity-based generalisation, the
model’s learning trajectory moves towards predictive accuracy, rather than showing a
wholesale shift from relying exclusively on perceptual information to relying exclusively on
relational information. The empirical and modelling results therefore align with respect to
the arc and endpoint of this learning trajectory. The arc is gradual and emerges from expe-
rience. The endpoint is skilful similarity-based generalisation that takes multiple sources of
information into account.

However, the empirical and modelling results differ with respect to the starting point of
this developmental phenomena. Bulloch and Opfer (2009) found that the youngest partici-
pants in their study (3-year-olds) weremore ambivalent in their patterns of similarity-based
inference, choosing the relational match 61% of the time in offspring problems and 56% of
the time in prey problems. The model, on the other hand, relies on perceptual information
to make inferences in the early portion of the test phase before learning to make different
inferences for offspring and prey problems.

One reason for this difference is prior knowledge. Three-year-old children came to the
task with relevant experience of the contexts that were tested, whereas themodel came to
the task as a blank slate. As Bulloch and Opfer (2009) acknowledge, “children came to our
task knowing the value of the parent-offspring relation” (p. 120), which suggests that their
participants may, at least in the offspring context, experience a perceptual-to-relational
shift before they turn three. Prior empirical and theoretical work supports the view that
perceptual information is primary in similarity-based generalization—until, at least, people
have sufficient knowledge about the relevant categories and roles to understand the rela-
tional context (Badger & Shapiro, 2012; Gentner & Rattermann, 1998; Hayes & Thompson,
2007; Sloutsky et al., 2015).

Another reason for the difference is the design of the task. Participants in the studywere
presentedwith a target and two samples. Oneof the sampleswas coded as a purely percep-
tualmatch to the target, and the other was coded as a purely relationalmatch to the target.
However, close inspection of the stimuli reveals that this distinction is somewhat fuzzy.
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Notice that in Figure 1 the target juvenile (t) is a better perceptual match to the juvenile
on the right (b) but the target adults (TT) are a better perceptual match to the adults on
the left (AA). Since the inference questions focussed on the target juvenile, it was argued
that attending to the perceptual similarity of the adults represented a relational inference.
However, it is unclear if childrenwho chose the relational option did so because of the rela-
tional condition or because of the salient perceptual similarity between the sample and
target adults. This latter possibility seems especially likely since there was an overall prefer-
ence for the “relational” option (even 5-year-olds in the prey condition chose the relational
match over 45% of the time).

Nevertheless, the primary goal of the behavioural study is to show that, as children
develop, they become increasingly sensitive to contextual information whenmaking infer-
ences about category membership. This perspective challenges the view that there are
two distinct stages in the development of generalisation: one governed by perceptual sim-
ilarity and another governed by relational similarity. Instead, both the behavioural and
modelling results suggest that children learn to generalise flexibly and skilfully as they
develop.

General discussion

The results of our simulations provide evidence that certain important phenomena in
the development of similarity-based generalisation can be captured by a general-purpose
model of semantic learning (Leech et al., 2008; Rogers &McClelland, 2004; Thibodeau et al.,
2013). In this case, relational knowledge was learned from experience and represented
sub-symbolically (rather than explicitly coded) in the connection weights and hidden lay-
ers. Relational reasoning emerged from the learning algorithm (backprop) that extracted
coherent covariation from stimuli in the environment. Although the structural similari-
ties between the juveniles were not directly perceptible (i.e. as measured in the overlap
between input vectors representing the insects), the inferences that themodelmade in the
offspring condition were consistent with what one would expect from a more structured
model. Thus, our approach captures the documented primacy of perceptual informa-
tion (Gentner, 1988) and the context-flexibility of relational and perceptual generalisation
(Bulloch & Opfer, 2009).

While popularmodels like SME and LISA can likely accommodate these findings, to do so
might require ad-hoc changes to existing processing algorithms in order to account for the
role of context and predictive validity. The model used for the current study showed this
behaviour without positing analogy-specific machinery or structured, symbolic represen-
tations (as with SME, Falkenhainer et al., 1989; LISA, Hummel & Holyoak, 1997; and DORA,
Doumas et al., 2008).

On this view, the primacy of perceptual information and context-flexibility emerge natu-
rally from learned distributed representations of objects and relations. Themodel provides
an account of how conceptual knowledge is re-organized through experience as it acquires
domain-specific knowledge (Gentner et al., 1995) and how this re-representation gives rise
to relational reasoning. It does not require the concurrent development of working mem-
ory or inhibitory control (as was the case in Morrison et al., 2011; although see Kollias &
McClelland, 2013 for a fully connectionist account that considers these important cognitive
mechanisms).
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With this said, it is important to be clear that we are not claiming that our model can
account for all facets of human analogical reasoning. Many of the tasks that SME and LISA
andDORAmodel sowell (e.g. explicit analogicalmappingof features and relationsbetween
domains) rely on processes that we purposefully did not try to simulate (e.g. Bowdle & Gen-
tner, 1997; Morrison et al., 2004). Tasks that involvemaintaining representations in working
memory for explicit mapping or sophisticated mechanisms of inhibitory control are likely
beyond the scope of the current approach (Gentner &Markman, 1995; Halford et al., 2010).
For example, in one classic study of analogical reasoning, adults were first presentedwith a
complex linguistic description of a military problem and its solution before reading about
a relationally similar medical problem (Gick & Holyoak, 1980). Results indicated that partici-
pantswho consciously recognised the structural similarity between the twoproblemswere
more likely solve the medical problem because they could draw on an analogy between
them. The full range of cognitive processing for such a task, which involves buildingmental
representations from language, maintaining representations of the two problems in work-
ing memory, and mapping between them is beyond the scope of the current modelling
endeavour. The present work does, however, raise questions about when formal structure
is necessary andprovides aparsimonious account of context-sensitivity in thedevelopment
of generalisation.

Conclusion

Similarity-based generalisation is fundamental to human cognition, and the ability to
draw analogies based on abstract relational connections between superficially different
domains is crucial for reasoning and inference (Gentner, 1983, 2010; Hofstadter, 2001;
Penn et al., 2008). Learning to base generalisation on shared relations rather than (or
in the face of) shared perceptual features has been identified as an important devel-
opmental milestone (Gentner, 1988; Leech et al., 2008; Piaget, 1952; Rattermann &
Gentner, 1998). Unlike many other approaches to analogical reasoning that use sym-
bolic representations and analogy-specific mapping mechanisms, we have shown that
context-sensitive perceptual and relational reasoning can emerge over the course of
development in a domain-general learning model that employs distributed, sub-symbolic
representations.

Note

1. Nevertheless, wewould argue that the nature of Bulloch andOpfer (2009)’s task does not provide
strong evidence against the primacy of perceptual information. We further explore this issue in
more detail in the Discussion.
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