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Abstract	and	Keywords

Connectionism	is	a	computational	modeling	framework	inspired	by	the	principles	of	information	processing	that
characterize	biological	neural	systems,	which	rely	on	collections	of	simple	processing	units	linked	together	into
networks.	These	units	communicate	in	parallel	via	connections	of	varying	strength	that	can	be	modified	by
experience.	Connectionist	networks	have	a	wide	range	of	theoretical	and	practical	applications	because	they
exhibit	sophisticated,	flexible,	and	context-sensitive	behavior	that	mirrors	human	cognitive	performance	in	many
domains,	from	perception	to	language	processing.	By	emphasizing	the	commonalities	underlying	various	cognitive
abilities,	connectionism	considers	how	a	basic	set	of	computational	principles	might	give	rise	to	many	different
forms	of	complex	behavior.	Thus	connectionism	supports	a	novel	way	of	thinking	about	the	nature	and	origins	of
mental	life,	as	the	emergent	consequence	of	a	system	based	around	principles	of	parallel	processing,	distributed
representation,	and	statistical	learning	that	interacts	with	its	environment	over	the	course	of	development.
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Our	daily	lives	are	characterized	by	remarkable	feats	of	mental	functioning.	We	effortlessly	perceive	and
categorize	the	people	and	objects	in	our	environment,	remember	past	events	while	imagining	possible	futures,	and
communicate	with	friends	and	colleagues	in	speech	and	writing.	A	major	goal	for	cognitive	scientists	is	to	figure	out
how	these	phenomena	relate	to	the	material	world	of	atoms,	molecules,	brains,	and	bodies.	Philosophers	have
described	this	as	the	problem	of	reconciling	the	manifest	image	of	everyday	experience	with	the	scientific	image
of	the	universe	as	a	material	realm	governed	by	physical	laws	(Dennett,	2013;	Sellars,	1963).	Although	there	is	a
general	consensus	that	the	brain	plays	a	starring	role	in	mental	life,	just	how	the	activity	of	billions	of	brain	cells
(neurons)	might	support	complex	cognitive	functioning	remains	something	of	a	mystery.	In	this	chapter,	we	provide
a	brief	introduction	to	connectionism,	a	computational	modeling	framework	that	tries	to	address	this	issue	by	using
artificial	neural	networks	to	simulate	cognitive	processes	like	perception,	memory,	language,	and	analogical
reasoning.	Our	goal	is	to	foster	a	general	appreciation	for	how	these	models	work	and	how	they	can	enhance	and
even	transform	our	understanding	of	the	nature	and	origin	of	cognitive	functioning.

Background	and	Overview

According	to	the	philosopher	Daniel	Dennett,	a	notable	scientist	once	opened	a	workshop	with	the	following
statement:	“In	our	lab	we	have	a	saying:	if	you	work	on	one	neuron,	that’s	neuroscience;	if	you	work	on	two
neurons,	that’s	psychology”	(Dennett,	2013).	Although	undoubtedly	tongue-in-cheek,	this	comment	underscores
the	desire	of	many	researchers	to	ground	an	understanding	of	mental	processes	in	terms	of	interactions	between
neurons	in	the	brain.	Indeed,	scholars	have	long	hypothesized	that	the	pattern	of	connections	among	brain	cells
ought	to	have	significant	implications	for	mature	psychological	theories	(e.g.,	Freud,	1895;	James,	1890),	and
mathematical	models	in	the	connectionist	tradition	date	back	to	the	middle	of	the	20th	century	(e.g.,	McCulloch	&
Pitts,	1943;	Rosenblatt,	1958).	Connectionist	modeling	eventually	rose	to	prominence	in	the	1980s,	through	a
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convergence	of	cognitive	psychologists,	neuroscientists,	and	computational	scientists,	many	of	whom	joined
together	to	develop	the	parallel	distributed	processing	(PDP)	framework	(Rumelhart,	McClelland,	&	the	PDP
Research	Group,	1986b).	PDP	models	draw	their	inspiration	from	the	functional	organization	of	the	brain,	which	is
characterized	by	the	parallel	activity	of	many	neurons,	treated	as	simple	processing	units,	wired	together	into
intricate	networks.	The	strength	or	weight	of	the	connections	between	the	units	represents	the	knowledge	that	is
stored	in	the	network.	This	is	because	these	weights,	in	combination	with	the	input	signals	the	network	receives,
determine	the	pattern	of	activation	across	the	units	as	these	signals	are	propagated	through	the	system.	It	is	the
collective	activity	of	the	units	that	defines	the	functionality	of	the	network.	How	this	all	works	in	practice,	and	the
relationship	between	artificial	and	biological	neural	networks,	will	be	explored	in	more	detail	in	the	following	section.

Click	to	view	larger

Figure	1 .	Your	knowledge	of	English	and	the	surrounding	letter	context	enable	you	to	perceive	the	central
letter	as	an	“h”	in	“the”	and	the	same	character	as	an	“a”	in	“cat.”

That	being	said,	most	connectionist	modelers	favor	the	approach	not	simply	because	it	is	inspired	by	the	brain,	but
because	the	models	themselves	are	useful	for	addressing	many	types	of	psychological	and	computational
questions	(Anderson,	1977;	McClelland,	Rumelhart,	&	Hinton,	1986).	Although	connectionist	models	come	in	a	wide
range	of	configurations	that	differ	in	important	respects,	most	of	them	naturally	capture	certain	essential	features	of
human	thought	and	action.	For	instance,	cognitive	processing	at	all	levels,	from	perception	to	memory	to	language
comprehension,	is	known	to	be	highly	responsive	to	contextual	factors	(e.g.,	Bar,	2004;	Oliva	&	Torralba,	2007).
Figure	1	illustrates	this	idea	in	the	domain	of	letter	perception:	although	the	words	are	easily	read	as	“the	cat,”	a
closer	look	reveals	that	the	“h”	in	“the”	and	the	“a”	in	“cat”	are	exactly	the	same	shape.	It	is	the	surrounding
letters	and	your	knowledge	of	English	words	that	enables	you	to	fluidly	read	the	phrase	and	perceive	the	“correct”
letters	based	on	their	context.	Because	units	in	PDP	models	can	be	influenced	by	multiple	sources	of	information	at
the	same	time,	PDP	models	are	especially	sensitive	to	the	effects	of	context	on	cognition	and	behavior.

Furthermore,	cognitive	abilities	do	not	show	up	fully	formed	but	develop	over	time	as	a	consequence	of
experience.	An	emphasis	on	learning	makes	PDP	models	ideal	for	addressing	issues	related	to	cognitive
development,	including	the	effects	of	different	environmental	inputs	on	psychological	functioning	(Elman	et	al.,
1996;	Munakata	&	McClelland,	2003).	Finally,	in	cases	of	brain	damage,	many	behaviors	are	not	simply	eliminated
all	together	but	rather	show	a	gradual	decline	in	functioning	depending	on	where	and	how	much	damage	has	been
inflicted.	Because	the	information	stored	in	a	PDP	model	is	often	distributed	across	many	units	and	connections,
these	models	naturally	capture	this	phenomenon,	as	well	as	the	graded	or	probabilistic	nature	of	knowledge
representation	(i.e.,	memory)	more	generally.	Many	of	these	properties	of	connectionist	models	are	not	shared	by
other	popular	approaches	to	cognitive	modeling.

The	key	take-home	message	is	that	connectionist	models	are	not	just	somewhat	biologically	plausible
implementations	of	existing	psychological	theories;	rather,	they	provide	alternatives	to	other	theories	and	offer	a
means	of	investigating	a	unique	way	of	thinking	about	mental	processing.	In	particular,	the	connectionist
perspective	suggests	that	complex	cognitive	functions	are	an	emergent	consequence	of	the	dynamic	interactions
between	much	simpler	processing	elements.	Importantly,	the	emergent	properties	of	a	system	are	those	that
cannot	be	reduced	to	the	behavior	of	any	of	the	simpler	elements	that	make	up	the	system	in	isolation.	In
psychology,	therefore,	familiar	cognitive	constructs	like	schemas,	syntactic	rules,	analogical	mapping,	and
executive	functioning	need	not	be	thought	of	as	distinctive	knowledge	structures	or	mechanisms.	Instead,	these
processes	can	be	understood	as	higher	level,	approximate	descriptions	of	underlying	network	behavior;	behavior
that	arises	spontaneously	out	of	a	system	that	embodies	a	particular	set	of	basic	computational	principles.	As	we
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have	alluded	to	already,	these	principles	include	an	emphasis	on	distributed	representations	and	parallel
processing,	as	well	as	others	like	constraint	satisfaction,	pattern	matching,	and	statistical	learning.	We	suggest	that
this	emergentist	perspective	(see	McClelland,	2010;	McClelland	et	al.,	2010)	is	a	powerful	alternative	to	other
computational	approaches	in	the	cognitive	sciences,	which	tend	to	place	a	greater	emphasis	on	structured,
symbolic	representations	and	task-specific	processing	machinery	that	must	be	explicitly	coded	into	cognitive
models.	These	ideas	will	be	fleshed	out	throughout	the	chapter.

In	the	following	section,	we	provide	a	broad	overview	of	how	connectionist	models	work,	drawing	attention	to	what
we	see	as	the	key	computational	principles	that	characterize	the	PDP	framework.	To	illustrate	how	sophisticated
cognitive	behavior	can	emerge	in	a	connectionist	model	as	a	function	of	these	principles,	we	review	two	influential
models:	the	interactive-activation	(IA)	model	(McClelland	&	Rumelhart,	1981;	Rumelhart	&	McClelland,	1982)	and
the	simple	recurrent	network	(SRN;	Elman,	1990).	Finally,	we	highlight	several	exciting	future	directions	for	the	field
and	discuss	how	connectionist	models	can	function	as	important	tools	for	thinking	about	the	nature	of	the	mind	and
behavior.	Along	the	way,	we	will	decipher	a	cartographic	parable,	discover	why	errors	are	the	key	to	learning,	and,
with	any	luck,	start	to	demystify	the	exceptionally	mystifying	concept	of	emergence.

The	Basic	Philosophy	and	Mechanics	of	Connectionist	Modeling

Maps,	Models,	and	Reality

In	a	very	short	story	by	Jorge	Luis	Borges,	the	author	describes	an	ancient	empire	that	prized	cartography	above
all	other	art	forms	(Borges,	1998).	The	cartographers	in	this	land	endeavored	to	create	the	most	detailed	and
accurate	atlases	possible,	which	resulted	in	maps	of	provinces	the	size	of	cities.	Eventually,	they	produced	a	map
of	the	empire	that	was	the	size	of	the	empire	itself.	The	brief	parable	ends	there,	but	we	want	to	highlight	two
related	themes	that	will	help	frame	our	discussion	of	connectionist	modeling.

The	first	is	the	metaphor	of	scientific	models	as	maps	of	reality.	Maps	are	tools	that	can	be	used	to	navigate
complex	environments	because	they	represent	relevant	features	of	the	surrounding	lands	in	a	format	that	the	map
user	can	make	sense	of.	Similarly,	scientific	models	are	tools	that	can	be	used	to	make	sense	of	complex	aspects
of	reality	by	representing	them	in	a	format	that	researchers	can	understand	and	employ	in	the	service	of	fitting	and
predicting	patterns	of	data.	The	second	theme	is	the	essential	lesson	of	the	story:	maps	must	be	simplifications	of
the	territory	they	represent;	otherwise,	they	cannot	fulfill	their	role	as	navigational	tools.	The	same	reasoning
applies	to	scientific	models	(which	is	why	Borges	titled	his	story	“On	Exactitude	in	Science”).	By	simplifying	a
complicated	theory	or	domain	down	to	a	set	of	central	principles	and	instantiating	them	in	a	formal	model,	the
implications	of	these	ideas	become	easier	to	get	a	handle	on	and	the	model	can	function	as	intended	as	a
research	tool	(McClelland,	2009).

Putting	the	“Neural”	into	Artificial	Neural	Network

Connectionist	models	are	like	simplified	maps	of	cognitive	systems	inspired	by	the	organization	of	the	brain.	They
are	not	atlaslike	maps	of	the	nervous	system	but	relatively	abstract	representations	that	seek	to	capture	key
functional	features	of	neural	information	processing.	Biological	neurons	are	sophisticated	cells	that	communicate
with	other	neurons	through	a	complex	interplay	of	electrical	and	chemical	signaling.	When	a	neuron	reaches	a
specific	threshold	of	stimulation	it	sends	a	rapid	electrical	wave	(action	potential)	down	its	axon.	This	results	in	the
release	of	neurotransmitter	chemicals	into	the	small	gap	(synapse)	that	connects	the	terminal	bud	of	the	axon	to
the	receiving	end	(dendrite)	of	the	next	cell	in	the	chain.	When	the	release	of	these	neurotransmitters	increases
the	likelihood	that	the	postsynaptic	neuron	will	fire	(i.e.,	reach	the	threshold	necessary	for	an	action	potential),	it	is
called	an	excitatory	connection.	When	it	decreases	the	likelihood	that	the	postsynaptic	neuron	will	fire,	it	is	called
an	inhibitory	connection.	These	connections	vary	in	strength,	or	extent,	of	the	excitatory	or	inhibitory	effect.
Finally,	each	neuron	may	be	connected	to	thousands	of	other	neurons	in	a	vast	web	of	cellular	activity,	and	all	of
these	neurons	are	continually	adjusting	their	activations	in	parallel	so	that	they	can	influence	one	another	at	the
same	time.

Now	take	a	look	at	the	schematic	connectionist	network	depicted	in	Figure	2.	The	circles	represent	the	units,
analogous	to	neurons.	The	lines	linking	the	units	represent	the	connections	between	the	units,	which	are
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analogous	to	the	synapses	linking	biological	neurons.	In	many	models,	the	units	are	organized	into	distinct	layers,
as	shown	in	Figure	2.	The	input	layer	receives	information	from	the	environment,	analogous	perhaps	to	lower	level
sensory	regions	of	the	brain	(although	this	will	depend	on	the	particular	model).	The	output	layer	denotes	the
“response”	of	the	system	after	the	input	signals	have	propagated	through	the	network,	possibly	analogous	to	a
button	press	or	perceptual	judgment	(depending	on	the	task	being	simulated).	The	hidden	layer	is	like	the	cortical
brain	regions	that	intervene	between	sensory	input	layers	and	response	output	layers.	Figure	2	portrays	a	feed-
forward	network	because	activation	travels	in	only	one	direction	(from	input	to	output,	traversing	the	hidden	layer).
Brain	networks	likely	include	feedback	and	recurrent	connections,	and	many	models	include	them	(we	will	consider
such	a	network	later),	but	you	may	be	surprised	by	how	much	we	can	learn	from	a	simple	feed-forward	network
(and	if	you	wonder	how	this	could	be	so,	think	of	the	ancient	cartographers!).

Click	to	view	larger

Figure	2 .	A	schematic	of	a	feed-forward,	three-layer	network.	Activation	in	the	network	propagates	from	the
input	layer	to	the	hidden	layer	to	the	output	layer.

One	tricky	conceptual	issue	is	the	relationship	between	units	and	connections	on	the	one	hand	and	neurons	and
synapses	on	the	other.	It	is	tempting	to	think	of	units	as	corresponding	to	individual	neurons	or	groups	of	neurons,
and	this	can	be	useful	for	some	purposes.	However,	it	is	ultimately	better	to	adopt	a	more	abstract	perspective,	in
which	the	emergent,	system-level	consequences	of	activity	in	vast	populations	of	neurons	are	simulated	using
much	smaller	populations	of	units	(see	Smolensky,	1986,	for	the	first	and	still	definitive	treatment	of	this	idea).

Activation	Propagation

At	any	given	moment	in	time,	each	unit	in	a	network	will	have	a	particular	level	of	activation	that	is	represented	by
a	real	number.	In	some	models,	the	range	of	possible	unit	activations	is	restricted	to	binary	values,	where	an
activation	of	0	means	the	unit	is	“off”	(analogous	to	the	resting	state	of	a	neuron)	and	an	activation	of	1	means	the
unit	is	“on”	(analogous	to	a	neuron	firing	an	action	potential	or	a	series	of	action	potentials).	In	other	models,	the
activation	value	of	a	unit	is	free	to	vary	continuously,	typically	between	0	and	1,	with	higher	levels	of	activation
analogous	to	increases	in	the	firing	rate	of	a	neuron.	Each	connection	linking	two	units	also	has	a	particular	real
number	value	that	signifies	the	strength	and	type	of	connection,	with	larger	(absolute)	weight	values	indicating
greater	connection	strength.	Positive	weight	values	signify	an	excitatory	connection,	whereas	negative	values
signify	an	inhibitory	connection.	In	the	brain,	we	imagine	that	activations	of	units	are	updated	continually	in	time,
just	as	the	position	of	a	moving	object	changes	continually.	In	simulations,	we	break	time	up	into	discrete	steps	for
methodological	convenience.	Sometimes	these	steps	are	very	fine,	closely	approximating	continuity.	At	other
times,	the	steps	are	much	coarser,	sometimes	simply	corresponding	to	initial	and	final	states	at	the	beginning	and
end	of	processing.

How	do	signals	actually	propagate	through	the	network?	To	begin	with,	all	of	the	units	are	typically	set	to	their
resting	state	(usually	near	0)	or	to	a	random	activation	near	their	resting	state.	Next,	the	network	must	receive
information	from	the	environment,	which	in	practice	means	that	one	or	more	units	in	the	input	layer	are	turned	“on”
by	the	modeler	(activation	=	1).	A	simple	algorithm	is	then	used	to	compute	the	activation	values	for	the	rest	of	the
units	in	the	network	at	the	next	time	step	(it	takes	two	time	steps	for	input	signals	to	reach	the	output	layer	in	the
three-layer,	feed-forward	model	portrayed	in	Figure	1	because	activation	must	first	pass	through	the	hidden	layer).
For	a	given	unit,	u ,	you	must	first	determine	the	net	input	to	that	unit.	To	do	this,	multiply	the	current	activation	of
each	of	the	units	that	connects	to	u 	by	the	value	of	the	weight	connecting	the	units	and	then	compute	the	sum	of

i
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these	products.	After	that,	you	need	to	invoke	a	particular	rule	for	converting	the	net	input	into	the	new	activation
value	for	u .	Some	models	use	a	threshold	rule,	where	u 	only	becomes	active	if	the	net	input	exceeds	a	specific
value.	In	other	models,	the	net	input	might	be	fed	through	a	mathematical	function	to	come	up	with	a	continuous
activation	value.	A	sigmoid	or	S-shaped	function	is	often	used	and	can	be	thought	of	as	a	continuous	version	of	a
step	function.	Sigmoids	neatly	capture	the	fact	that	biological	neurons	cannot	fire	at	rates	above	about	100	times
per	second	and	cannot	fire	at	rates	below	zero.

Pattern	Matching	and	Knowledge	Representation

Because	that	is	pretty	much	all	there	is	to	processing	in	connectionist	networks,	what	can	this	simple	type	of
system	actually	do?	For	starters,	connectionist	models	are	adept	at	pattern	recognition	or	pattern	matching,	which
in	practice	means	taking	in	a	specific	input	and	yielding	a	specific	output.	In	principle,	a	network	can	come	to
associate	any	arbitrary	pattern	of	activation	over	the	input	layer	with	any	pattern	of	activation	over	the	output
layer.	This	basic	property	has	a	wide	range	of	powerful	applications,	which	should	become	apparent	as	we
continue	to	explore	the	way	these	models	are	used	by	researchers	to	understand	cognitive	processing.	In
essence,	many	different	cognitive	functions	can	be	recast	as	the	ability	to	detect,	represent,	and	predict	patterns
of	stimulation	from	the	environment	and	to	produce	appropriate	patterns	of	outputs.

Hopefully,	it	is	already	clear	that	the	value	of	the	weights	in	the	network	determines	what	output	pattern	will	result
from	a	given	input	signal;	the	“knowledge”	of	the	association	between	a	specific	input	and	a	specific	output	is
“stored”	in	the	connection	weights.	The	use	of	quotation	marks	is	deliberate	here	since	these	words	are	being
used	in	a	specific	and	atypical	way.	The	knowledge	represented	in	the	weight	matrix	is	tacit	or	implicit	because
the	value	of	a	weight	simply	determines	how	activations	are	filtered	through	the	network,	and	information	regarding
multiple	different	associations	may	flow	through	the	very	same	weights.	In	other	words,	the	value	of	a	weight	or	set
of	weights	does	not	itself	code	or	stand	for	anything	in	the	world.	This	is	very	different	from	how	a	digital	computer
stores	its	“knowledge”;	that	is,	through	the	use	of	stored	arrangements	of	symbols	that	explicitly	represent	or
stand	for	the	information	needed	to	guide	processing.	Connectionist	models	do	represent	the	current	content	of
mental	states	in	a	somewhat	accessible	form;	when	an	input	signal	is	propagated	through	the	network,	the	resulting
pattern	of	activation	across	all	of	the	internal	units	can	be	thought	of	as	a	representation	of	the	input	pattern	and	of
the	thoughts	and	possible	actions	that	it	brings	to	mind.	The	key	difference	is	that	the	knowledge	that	guides	the
formation	of	these	patterns	is	not	available	for	inspection,	as	it	is	in	a	standard	computer	program.

Maps,	Models,	and	Reality	Revisited

Now	that	we	have	reviewed	the	basic	principles	governing	connectionist	networks,	we	can	start	to	address	how
these	models	may	be	used	as	tools	for	simulating	and	conceptualizing	cognitive	functioning.	It	will	be	helpful	here
to	revisit	the	metaphor	of	scientific	models	as	maps	of	reality.	Most	maps	work	by	depicting	important	features	of
the	environment	in	a	simplified	(and	portable)	format	and	transposing	these	representations	onto	a	two-dimensional
surface	while	preserving	the	spatial	relationships	between	them.	However,	different	types	of	maps	preserve
different	features	of	the	environment	and	different	spatial	relationships,	depending	on	their	intended	function.
Indeed,	a	subway	map	will	help	you	get	from	Brooklyn	to	Queens	using	public	transportation,	but	it	won’t	be	much
use	if	you	plan	on	driving.	To	use	a	real	map,	therefore,	you	have	to	figure	out	just	how	it	maps	onto	the	territory	it
represents.

In	a	similar	vein,	to	use	a	connectionist	model,	you	have	to	figure	out	how	features	of	the	model	map	onto	the
cognitive	territory	you	intend	to	simulate	and	at	what	scale.	This	involves	interpreting	the	cognitive	task	you	care
about	in	terms	of	the	structural	and	functional	properties	of	the	model.	Performance	on	the	task	should	be	framed
as	the	behavior	(the	output	or	overall	activation	state)	that	results	from	a	system	(the	network)	that	is	stimulated	by
the	environment	(the	input),	possibly	over	the	course	of	development	(see	the	later	discussion	of	learning).	Be	sure
to	keep	in	mind	that	this	is	a	deliberate	(and	useful)	oversimplification	because	no	connectionist	modeler	believes
that	brains	(or	people)	are	just	passively	bombarded	by	environmental	stimulation.	Indeed,	you	should	imagine	that
the	system	is	(part	of)	a	brain	embedded	in	an	organism	that	is	actively	exploring	or	interacting	with	the	world	since
the	same	general	principles	will	apply	either	way.

Diving	a	bit	deeper,	the	pattern	of	activity	across	the	input	layer	typically	stands	for	the	information	the	cognitive
system	is	receiving	from	the	environment.	This	could	be	anything	from	low-level	sensory	stimulation	to	higher	level

i i
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perceptual	or	conceptual	gestalts	(e.g.,	words	or	objects).	The	complete	set	of	patterns	that	a	network	is	exposed
to	therefore	signifies	the	total,	simplified	environment	of	the	model.	The	pattern	of	activity	across	the	output	layer
typically	denotes	the	response	or	behavior	of	the	system	on	a	given	“trial.”

It	is	important	to	specify	just	how	these	units	correspond	to	the	task	information	you	care	about.	Some	models
utilize	localist	representations,	in	which	each	individual	unit	stands	for	a	single	meaningful	stimulus.	This	is	a
natural	way	of	thinking	about	computational	modeling,	echoing	classical	approaches	that	treat	representations	as
individual	symbolic	structures.	Keep	in	mind,	though,	that	even	localist	connectionist	units	do	not	function	like	the
symbolic	representations	stored	in	your	desktop	computer,	which	can	be	shuttled	around	and	manipulated	by	any
number	of	different	operations.	Other	connectionist	networks	utilize	distributed	representations,	in	which	the
relevant	stimulus	is	represented	by	the	pattern	of	activation	across	an	entire	layer	of	units.	In	this	case,	no	single
unit	has	any	intrinsic	meaning	(or	referent),	and	each	unit	may	be	an	active	participant	in	multiple	different
meaningful	patterns.	Some	multilayer	networks	use	localist	input	or	output	units	for	the	sake	of	simplicity,	but	the
learning	process	forces	these	networks	to	learn	distributed	representations	over	the	hidden	units	(see	the	later
discussion	of	the	SRN,	as	well	as	Elman,	1990;	Flusberg,	Thibodeau,	Sternberg,	&	Glick,	2010;	Rogers	&
McClelland,	2004).

To	make	these	ideas	more	concrete,	we	turn	now	to	a	discussion	of	a	classic	connectionist	model	with	a	wide
array	of	applications:	the	interactive	activation	model	(McClelland	&	Rumelhart,	1981;	Rumelhart	and	McClelland,
1982).

The	Interactive	Activation	Model

Context	in	Perception

Psychologists	have	repeatedly	shown	that	the	surrounding	context	influences	our	ability	to	perceive	things	in	the
environment	(see	Figure	1).	For	example,	people	are	faster	to	locate	and	recognize	a	familiar	object	when	it	is
consistent	with	the	background	scene	(Bar,	2004;	Oliva	&	Torralba,	2007;	Palmer,	1975).	In	other	words,	you’re
quicker	to	spot	a	toaster	in	the	kitchen	than	in	your	bedroom.	Similarly,	people	are	faster	and	more	accurate	at
perceiving	letters	when	they	are	embedded	in	a	real	word	than	when	they	are	embedded	in	a	random	string	of
letters	(e.g.,	identifying	the	O	in	SPOT	vs.	TKOR;	Reicher,	1969).	These	findings	demonstrate	that	we	bring
knowledge	of	our	past	experiences	to	bear	when	we	engage	in	perceptual	tasks.	Interestingly,	when	it	comes	to
letter	perception,	we	are	also	faster	and	more	accurate	at	identifying	a	letter	when	it	appears	in	a	pronounceable
nonword	(e.g.,	BROT).	This	seems	to	suggest	that	we	are	using	knowledge	of	orthographic	rules	in	this	task	and	not
simply	relying	on	familiarity	with	specific	words	we	have	encountered	before.	Does	that	mean	we	explicitly
represent	these	rules	in	our	minds	and	use	them	in	the	service	of	perceiving	letters?

McClelland	and	Rumelhart	(1981)	developed	the	interactive	activation	(IA)	model	to	help	make	sense	of	these
findings	and	illustrate	how	they	might	emerge	out	of	a	system	that	does	not	explicitly	instantiate	any	orthographic
rules.	The	structure	of	their	network	was	inspired	by	findings	from	the	neuroscience	literature	showing	that	neurons
in	visual	brain	regions	respond	to	perceptual	information	at	varying	levels	of	abstraction.	Some	cells	respond
chiefly	to	low-level	perceptual	features	like	lines	and	edges,	whereas	others	respond	to	higher	level	perceptual
gestalts	like	letters,	words,	and	faces	(Wandell,	1995).	Importantly,	feedback	connections	between	these	regions
ensure	they	can	mutually	influence	one	another.	In	other	words,	perception	seems	to	involve	the	simultaneous,
interactive,	parallel	processing	of	incoming	visual	data	at	multiple	hierarchical	levels.

Model	Architecture
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Click	to	view	larger

Figure	3 .	On	the	left,	a	schematic	of	the	interactive	activation	(IA)	model	of	letter	perception.	On	the	right,	a
zoomed	in,	schematic	close-up	of	part	of	the	model	(only	a	subset	of	the	connections	depicted).	Arrows
indicate	excitatory	connections	while	circles	indicate	inhibitory	connections.

A	schematic	of	the	IA	network	is	depicted	in	Figure	3,	with	the	global	architecture	on	the	left	and	a	close-up	in	more
detail	of	one	small	bit	of	the	network	on	the	right.	The	model	was	designed	to	perceive	four-letter	strings	using
localist	representations,	but	this	architecture	is	somewhat	different	from	the	feed-forward	networks	we	examined	in
the	previous	section.	Starting	at	the	highest	level,	each	unit	in	the	word	layer	represents	one	of	1,179	four-letter
words	in	English.	Each	word	unit	has	an	inhibitory	connection	to	every	other	word	unit	because	you	can	only
perceive	one	word	at	a	time	(and	therefore	if	one	word	is	strongly	active,	it	should	suppress	the	activation	of	every
other	word).	Each	unit	in	the	letter	layer	represents	an	English	letter	at	one	of	the	four	possible	positions	it	might
occupy	in	one	of	the	words	(i.e.,	there	are	26	units	for	the	first	letter	of	the	word,	26	units	for	the	second	letter	of
the	word,	etc.).	Again,	letter	units	send	inhibitory	connections	to	other	letter	units	at	their	position	since	only	one
letter	can	be	perceived	at	a	given	position	at	a	time.	Letter	units	project	excitatory	connections	up	to	word	units
that	are	consistent	with	that	letter	at	that	position	in	the	word,	and	word	units	do	the	same	thing	down	to	the	letter
layer.	Thus,	a	letter	unit	representing	“B”	in	the	first	position	will	have	mutually	excitatory	connections	to	units
representing	BALL,	BAKE,	and	BOWL.	Letter	units	also	have	excitatory	and	inhibitory	connections	with	units	in	the
feature	level,	which	represent	the	different	line	features	that	make	up	the	block	letters	at	each	of	the	four	possible
positions.	Again,	these	units	inhibit	one	another	when	their	mutual	presence	at	a	location	would	be	inconsistent,
and	they	excite	one	another	when	their	mutual	present	would	be	consistent.

IA	Model	in	Action

How	is	this	network	actually	used	to	simulate	the	task	of	perceiving	a	letter	at	a	particular	position	in	a	string?	First,
the	units	in	the	feature	and	letter	layers	are	set	to	their	resting	activation	value	(just	a	bit	below	0).	The	units	in	the
word	layer	have	resting	levels	based	on	their	frequency	in	the	English	language	to	capture	our	prior	knowledge
about	which	four-letter	strings	we	are	likely	to	encounter	(e.g.,	the	resting	level	of	unit	representing	the	frequent
word	CALL	would	be	very	close	to	0,	whereas	the	resting	level	for	the	infrequent	word	RAPT	would	be	farther	below
0).	Next,	a	letter	string	would	be	presented	to	the	network,	which	means	that	units	in	the	feature	layer	are	turned
on	(referred	to	as	“clamping”)	to	signify	this	visual	input.	Then,	these	activations	are	allowed	to	propagate	through
the	network	of	excitatory	and	inhibitory	connections	one	discrete	step	at	a	time	(a	general	decay	process	is	also
included	so	that	units’	activations	tend	to	subside	over	time	unless	they	are	receiving	a	relatively	greater	amount
of	excitatory	input).	The	“speed”	at	which	the	network	“perceives”	a	letter	in	a	given	position	is	captured	by
measuring	(or	comparing)	how	many	time	steps	it	takes	for	units	in	the	letter	layer	to	reliably	settle	on	the	“correct”
activation	levels	to	match	the	visual	input	at	that	position.	It	is	also	possible	to	simulate	conditions	in	which	words	or
letters	are	masked	or	degraded	and	to	obtain	a	measure	of	perceptual	accuracy.	Furthermore,	slight	variants	of
the	model	(using	slightly	different	details	of	the	activation	and	inhibition	assumptions	of	the	original)	can	be	shown
to	closely	approximate	optimal	use	of	sensory	information	and	prior	knowledge	of	words	in	perception	(McClelland,
2013).

Importantly,	this	relatively	simple	network	can	capture	all	of	the	context	effects	on	letter	perception	described
earlier,	including	the	advantage	of	identifying	a	letter	in	a	pronounceable	nonword.	To	get	a	sense	for	why	this	is
so,	consider	what	happens	when	the	network	is	presented	with	a	real	word	like	FLAG	and	asked	to	identify	the	first
letter.	This	string	will	initially	produce	bottom-up	excitation	of	the	F	at	the	first	position	in	the	letter	layer,	the	L	at	the
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second	position,	and	so	on.	This	will	then	lead	to	the	activation	of	words	like	FLAG,	FLAT,	and	FLOG	in	the	word
layer	because	they	are	consistent	in	all	or	almost	all	of	the	letter	positions	(although	the	activation	of	FLAG	will	tend
to	dominate	because	it	is	the	actual	word	being	presented	to	the	network).	The	activation	of	these	word	units	then
feeds	back	down	to	the	letter	layer,	facilitating	the	activation	of	F	at	the	first	position.	Thus,	the	network	will	quickly
activate	the	F	letter	in	the	first	position	because	of	this	combination	of	bottom-up,	feature-driven	processing	and
top-down,	word-driven	processing.

Now	consider	what	happens	when	the	network	is	presented	with	the	random	string	FXZQ	instead.	Because	none	of
the	word-level	units	receives	much	excitation	from	this	input,	no	word-level	units	will	become	active	over	the
course	of	the	first	few	time	steps	to	facilitate	the	processing	of	the	letter	F	in	a	top-down	fashion.	Thus,	the	network
will	be	“slower”	to	perceive	that	F.	Finally,	consider	what	happens	when	a	pronounceable	nonword	like	FLIG	is
presented.	Although	this	is	not	a	real	English	word,	pronounceable	words	tend	to	share	multiple	letters	with	real
words	(i.e.,	this	is	a	statistical	property	of	the	language	itself).	Thus,	when	the	network	is	presented	with	the	string
FLIG,	units	in	the	word	layer	representing	FLAG,	FLIP,	and	FLOG	will	actually	receive	some	bottom-up	activation
because	they	share	letters	with	this	string	at	three	positions.	The	activation	of	these	word	units	will	then	feed	back
down	to	the	letter	layer	and	facilitate	the	perception	of	the	F	in	the	first	position,	mirroring	human	behavior	on	these
sorts	of	trials.	Of	course,	the	network	will	show	the	same	sort	of	effect	for	nonpronounceable	letter	strings	as	well,
as	long	as	they	happen	to	share	multiple	letters	with	real	words	(e.g.,	FLNG).	Interestingly,	Rumelhart	and
McClelland	(1982)	found	that	human	participants	also	show	this	behavior,	confirming	a	novel	prediction	made	by
the	model.

Lessons	Learned

There	are	four	important	lessons	we	wish	to	draw	out	from	this	example.	First,	as	we	have	just	explained,	what
allows	the	network	to	succeed	at	simulating	context	effects	on	letter	perception	is	the	integration	of	distributed
information	processed	in	parallel	at	multiple	levels	of	abstraction.	Thus,	we	can	now	understand	a	seemingly
sophisticated	perceptual	process	in	terms	of	these	core	connectionist	principles.	Second,	and	in	a	related	fashion,
we	can	think	about	the	network	as	automatically	solving	a	constraint	satisfaction	problem	that	arises	when	the
feature	units	are	clamped	at	the	beginning	of	a	trial.	The	activation	of	any	given	unit	is	constrained	by	its
relationships	with	(i.e.,	connections	to)	other	units	both	within	its	layer	and	with	the	other	layers	it	projects	to.	As
activation	propagates	through	the	network,	all	of	these	constraints	are	acting	simultaneously,	which	leads	the
network	to	eventually	settle	on	a	global	activation	state	that	best	satisfies	all	of	these	mutual	constraints.	This	is	a
general	principle	of	parallel	distributed	processing	that	is	a	useful	way	of	framing	many	cognitive	tasks.

Third,	the	network	can	simulate	the	contextual	benefits	of	pronounceable	nonwords	on	letter	perception	without
any	explicit	representation	of	orthographic	rules	whatsoever.	That	is,	there	is	no	unit	or	weight	or	any	other	feature
of	the	network	that	explicitly	codes	for	rules	of	orthography.	This	demonstrates	that	when	a	system	behaves	as	if	it
is	using	a	particular	rule,	this	does	not	necessarily	mean	that	it	is	explicitly	representing	that	rule.	In	the	present
case,	the	appearance	of	rule-governed	behavior	was	an	emergent	property	of	a	system	in	which	one	of	the
constraints	on	network	activity	was	knowledge	of	real	English	words	(which	tend	to	share	letters	at	multiple
positions	with	pronounceable	nonwords).	This	is	one	of	the	key	insights	of	the	connectionist	framework	and	a	nice
way	to	illustrate	how	complex	behavior	can	emerge	from	a	system	of	simple	processing	units	operating	on	the
basis	of	a	few	core	computational	principles.	We	can	talk	about	the	network	as	“knowing”	orthographic	rules,	but
this	is	really	just	an	approximation	or	shorthand	(and	one	that	isn’t	entirely	useful	since	it	obfuscates	the	fact	that
both	human	subjects	and	the	network	show	enhanced	letter	perception	for	certain	nonpronounceable	letter	strings
as	well!).

Finally,	the	interactive	activation	architecture	is	not	useful	only	for	understanding	letter	perception.	Indeed,	it	can
be	extended	to	capture	findings	from	a	variety	of	perceptual	and	cognitive	domains	that	can	be	framed	in	terms	of
this	sort	of	multiple	constraint	satisfaction	problem.	Here	are	a	few	examples:	using	this	same	set	of	principles,
McClelland	and	Elman	(1986)	simulated	the	recognition	of	spoken	words	in	their	well-known	TRACE	model;	Burton,
Bruce,	and	Johnston	(1990)	simulated	the	recognition	of	faces;	Freeman	and	Ambady	(2011)	modeled	aspects	of
person	perception	in	social	psychology;	Rumelhart	et	al.	(1986c)	simulated	the	perception	of	the	ambiguous
Necker	cube;	and	McClelland	(1981)	and	later	Kumaran	and	McClelland	(2012)	applied	the	same	ideas	to	the
synthesis	of	information	across	items	in	memory.
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A	key	conceptual	link	to	other	ideas	in	cognitive	science	was	made	by	Rumelhart	et	al.	(1986c).	This	article
demonstrated	that	these	same	principles	could	help	us	think	about	the	nature	of	schemas	in	cognitive	processing.
Traditionally,	schemas	were	thought	to	be	a	particular	class	of	cognitive	structure	that	contained	an	organized
body	of	information.	For	example,	your	schema	of	a	kitchen	would	include	knowledge	of	all	of	the	furniture	that
typically	goes	into	a	kitchen.	Thus,	researchers	might	explain	the	fact	that	you	are	faster	to	locate	a	toaster	in	a
kitchen	than	in	a	living	room	by	claiming	that	your	kitchen	schema	was	activated	(in	the	same	way	they	might
invoke	knowledge	of	the	rules	of	orthography	to	explain	why	you	are	faster	at	locating	a	letter	in	a	pronounceable
nonword).	Rumelhart	et	al.	showed	that	room	schemas	could	instead	be	understood	as	emergent	properties	of	a
constraint	satisfaction	network	that	contained	units	representing	different	features	typically	found	in	rooms	around
the	house.

Of	course,	the	interactive	activation	architecture	cannot	explain	every	aspect	of	human	cognition!	The	model	as
we	have	described	it	does	not	even	address	some	of	the	core	principles	of	connectionist	modeling	alluded	to
earlier	in	this	chapter,	such	as	distributed	representations	and	a	learning	mechanism.	As	it	turns	out,	those	two
properties	can	play	a	powerful	rule	in	capturing	other	essential	features	of	cognitive	processing,	an	issue	we	turn
to	now.

Learning	and	Distributed	Representation

Gaining	(and	Losing)	Weight:	Learning	in	Connectionist	Networks

One	important	question	is	where	the	weight	values	in	connectionist	models	come	from	in	the	first	place.	In	some
cases,	like	the	IA	model,	the	modeler	stipulates	the	weight	values	to	ensure	the	proper	relationships	between	unit
activations	for	the	task	being	modeled.	More	commonly,	however,	the	network	is	forced	to	learn	the	“correct”
weight	values	during	an	initial	training	phase.	In	this	way,	a	system	that	“knows”	nothing	at	the	outset	may	come	to
acquire	that	knowledge	over	a	period	of	what	we	might	think	of	as	cognitive	development.	In	these	learning	models,
the	connection	weights	are	usually	randomized	before	training	to	a	range	of	small	values	so	that	the	network	starts
out	by	treating	every	input	pattern	in	roughly	the	same	way	(since	activation	will	be	weakly	propagated	for	all
inputs).

Hebbian	Learning

A	variety	of	different	but	related	learning	algorithms	have	been	developed	for	use	in	artificial	neural	networks.	The
simplest	one	is	Hebbian	learning,	inspired	by	neuropsychologist	Donald	Hebb’s	(1949)	famous	dictum	that	is
commonly	paraphrased	as	“neurons	that	fire	together,	wire	together.”	In	this	case,	whenever	two	connected	units
are	active	at	the	same	time,	the	weight	between	them	is	strengthened	in	proportion	to	how	strongly	they	were
activated	(usually,	some	way	of	reducing	weights	between	weakly	activated	units	is	included	as	well).	The	precise
degree	to	which	the	weight	value	is	increased	for	each	co-activation	is	determined	by	a	parameter	known	as	the
learning	rate.	The	learning	rate	is	generally	set	to	be	quite	small,	which	results	in	gradual	development	of	the
network	and	can	help	prevent	new	learning	from	simply	overwriting	previously	learned	information.	A	direct	analog
of	this	type	of	learning,	known	as	long-term	potentiation	(LTP),	was	discovered	in	the	mammalian	brain	less	than	20
years	after	Hebb	proposed	it	(Lømo,	1966).

Hebbian	learning	is	a	type	of	unsupervised	learning	that	endows	a	network	with	the	ability	to	adapt	itself	to	the
patterns	it	is	exposed	to	in	the	environment	(a	form	of	self-organization).	This	yields	some	useful	properties,	such
as	the	capacity	to	retrieve	a	complete	memory	from	partial	information.	To	understand	how	this	works,	consider	a
network	consisting	of	just	one	layer	of	100	units	that	are	all	connected	to	one	another.	Now	imagine	that	whenever
the	network	experiences	a	particular	event	in	the	environment,	a	dozen	units	turn	on.	Different	events	will	lead	to	a
different	subset	of	units	becoming	active,	but	if	the	network	encounters	the	same	event	again,	the	same	12	units
will	reactivate.	Over	time,	the	continued	co-activation	of	these	dozen	units	will	lead	to	an	increase	in	the	strength
of	the	weights	connecting	them.	As	a	result,	if	you	activate	just	a	few	of	these	units,	the	network	will	tend	to
reactivate	the	entire	pattern	representing	the	event	(since	the	activations	will	propagate	through	the	strengthened
weights	linking	these	units).	This	is	analogous	to	our	ability	to	retrieve	a	complex	memory	of	a	friend	when	we	are
exposed	only	to	a	simple	cue	like	his	name.	We	will	revisit	this	phenomenon	when	we	discuss	the	advantages
conferred	by	using	distributed	representations.
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Error-Driven	Learning

A	slightly	more	complicated	learning	algorithm	requires	comparing	the	activations	at	the	output	layer	to	a	target
activation	pattern	and	using	the	discrepancy	between	the	two,	known	as	the	error	signal,	to	adjust	the	weights	in
order	to	reduce	the	magnitude	of	this	error	in	the	future.	This	error-driven	learning	algorithm	is	commonly	known	as
the	delta	rule	(delta,	Δ,	is	the	Greek	letter	that	symbolizes	change	in	math	and	science).

To	make	this	procedure	more	concrete,	consider	an	example	of	learning	that	most	introductory	students	of
psychology	are	familiar	with:	Pavlovian	classical	conditioning.	In	a	typical	study,	a	dog	or	other	animal	must	learn
to	associate	a	neutral	stimulus	like	a	ringing	bell	or	flash	of	light	with	an	appetitive	stimulus	like	food	or	an	aversive
stimulus	like	an	electric	shock.	This	is	accomplished	by	repeatedly	pairing	the	relevant	stimuli.	After	several	such
pairings,	the	dog	might	drool	when	exposed	to	a	flash	of	light	that	was	paired	with	food	and	whimper	when	exposed
to	a	ringing	bell	that	was	paired	with	a	shock.	A	simple,	error-driven	learning	network	can	capture	this	process
quite	nicely.

Imagine	a	two-layer	network	with	two	units	in	each	layer.	The	units	in	the	input	layer	each	represent	a	seemingly
benign	stimulus	that	may	be	present	in	the	environment:	a	light	and	a	bell	(conditioned	stimuli).	The	output	units
each	represent	another	stimulus	that	our	experimental	animal	actually	cares	about:	a	delicious	bowl	of	meat	and	a
painful	shock	(unconditioned	stimuli).	The	“goal”	of	the	network,	if	you	like,	is	to	activate	the	unit	representing	the
appropriate	unconditioned	stimulus	when	one	of	the	input	conditioned	stimuli	units	is	activated.	So,	if	you	activate
the	light	unit,	the	network	should	activate	the	food	unit	(but	not	the	shock	unit),	and	if	you	activate	the	bell	unit,	the
network	should	activate	the	shock	unit	(but	not	the	food	unit).	Because	the	connection	weights	are	initialized	to
very	low	random	values,	at	the	start	of	training	activating	either	the	light	or	bell	units	will	result	in	the	weak
activation	of	both	the	food	and	shock	units.	Therefore,	when	we	activate	the	light	unit	and	then	present	the	food,
there	will	be	a	large	amount	of	error	on	the	food	unit,	since	we	want	this	unit	to	be	fully	activated	but	it	isn’t	at	the
moment	(error	is	equal	to	the	target	activation	of	the	output	unit	minus	the	actual	output	unit	activation).	To	figure
out	how	much	to	adjust	the	weight	between	the	light	unit	and	the	food	unit,	simply	multiply	this	error	by	the	value	of
the	learning	rate	parameter.	Gradually,	over	the	course	of	training,	this	connection	weight	will	be	strengthened	by
this	procedure.	At	the	same	time,	the	weight	between	the	light	unit	and	the	shock	unit	will	be	weakened	because
the	target	activation	of	the	shock	unit	given	an	input	of	light	is	zero.	The	training	phase	itself	would	consist	of
individual	episodes	in	which	one	of	the	input	units	is	activated,	the	signal	is	propagated	to	the	output	layer,	and	the
resulting	error	signals	on	the	output	units	are	used	to	adjust	the	weights.	This	process	would	then	be	repeated	for
the	other	input	unit.	This	would	constitute	a	single	epoch	of	training.	Because	of	the	gradual	nature	of	learning	in
most	artificial	neural	networks,	the	entire	training	phase	often	consists	of	many	epochs,	continuing	until	the	errors
on	the	output	units	are	substantially	reduced	or	eliminated.

Frank	Rosenblatt	(1962)	demonstrated	that	this	simple	error-driven	learning	process	could	be	used	to	adjust	the
connection	weights	in	two-layer	networks	(which	he	called	perceptrons)	to	associate	any	arbitrary	input	and	target
output	patterns.	However,	researchers	later	showed	that	these	two-layer	networks	were	inherently	limited	in	their
computational	power	(Minsky	&	Papert,	1969).	In	particular,	if	these	networks	have	to	learn	to	match	multiple	input
and	output	patterns,	there	are	certain	sets	they	simply	cannot	get	right	because	the	error	signals	would	keep
pushing	the	weights	in	a	direction	that	would	work	for	one	of	the	pattern	pairs	but	not	the	other	(mathematically
speaking,	these	sets	of	patterns	are	not	linearly	separable).

Three-layer	networks	are	much	more	powerful	and	can	get	around	this	problem.	However,	the	basic	delta	rule
cannot	be	used	to	train	these	multilayer	networks	since	there	are	now	two	sets	of	weights	that	have	to	be	adjusted;
because	there	is	no	obvious	target	activation	for	the	hidden	layer	units,	there	is	no	error	signal	available	to	adjust
the	weights	between	the	input	and	hidden	layers.	Fortunately,	researchers	have	discovered	several	learning
algorithms	that	can	be	used	to	train	multilayer	networks	using	extensions	of	Hebbian	learning	and	the	delta	rule
(Hinton,	1989;	Rumelhart	et	al.,	1986a).	For	example,	the	backpropagation	algorithm	starts	with	the	error	at	the
output	layer	and	sends	a	signal	based	on	the	error	backward	through	the	network	toward	the	input	to	determine
how	to	change	each	weight	to	reduce	the	error.	The	mathematically	inclined	reader	is	invited	to	check	out	the
simple	calculus	that	makes	this	possible	(Rumelhart	et	al.,	1986a).	An	early	criticism	of	the	backpropagation
algorithm	was	that	it	could	never	be	realized	by	a	biological	nervous	system	(this	is	in	part	due	to	the	fact	that	it
requires	that	error	signals	be	sent	backward	through	the	network,	something	that	neurons	in	your	brain	do	not
appear	to	do).	However,	is	has	now	been	shown	that	learning	algorithms	that	are	functionally	equivalent	to

1
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backpropagation	can	be	biologically	plausible	(e.g.,	O’Reilly,	1996).

One	question	you	may	have	at	this	point	is	whether	error-driven	learning	is	at	all	plausible	as	a	mechanism	for
human	cognitive	development.	For	example,	is	there	any	real-world	analog	of	target	activations	that	a	biological
agent	could	actually	use?	One	source	of	target	activations	might	be	the	supervised	feedback	we	receive	from
other	people	in	the	environment:	if	a	toddler	sees	a	dog	and	screams	“cat!”	her	caregiver	may	respond,	“no,
that’s	a	doggie.	Can	you	say	doggie?”	This	type	of	scenario	may	be	familiar	and	even	plausible,	but	children	seem
to	learn	about	vastly	more	in	their	environment	than	they	are	ever	given	explicit	feedback	on.

A	more	general	source	of	target	activations	requires	reconstruing	the	nature	of	learning	as	an	attempt	to	improve
predictions	about	what	will	be	experienced	in	the	environment	(given	what	is	currently	being	experienced).
Consider	once	again	the	simple	two-layer	classical	conditioning	network	described	earlier.	Recall	that,	at	the	start
of	training,	activating	the	input	unit	that	represents	the	light	will	lead	to	very	little	activation	on	the	output	units
representing	the	meat	and	the	shock	because	the	weights	are	initialized	to	small	random	values.	You	can	think
about	this	in	the	following	way:	if	you	flash	a	light	at	the	start	of	a	conditioning	experiment,	the	animal	will	register
that	fact	but	it	will	harbor	no	real	expectation	about	what	will	happen	next.	However,	when	you	repeatedly	give	the
animal	the	food	after	turning	on	the	light	and	shock	it	after	ringing	the	bell,	it	will	eventually	learn	that	the	light
predicts	food	(and	not	shock)	and	the	bell	predicts	pain	(and	not	food).	Dogs	will	readily	acquire	this	information
and	adjust	their	expectations	accordingly,	signified	by	drooling	for	the	light	and	whimpering	for	the	bell.	In	terms	of
the	learning	model,	the	actual	presence	or	absence	of	the	food	and	shock	in	the	environment	serves	as	the
relevant	target	activation.	Thus,	the	error	signal,	or	prediction	error,	is	the	difference	between	the	network’s
expectation	of	what	will	happen	(the	activation	over	the	output	layer)	and	what	actually	does	happen.	On	this	view,
then,	learning	is	a	process	of	reducing	the	prediction	errors	that	continuously	arise	as	a	result	of	a	cognitive	agent
attempting	to	predict	what	will	happen	next	in	its	environment.	Some	researchers	have	even	suggested	that	the
minimization	of	prediction	error	may	be	a	unifying	principle	of	brain	functioning	(Clark,	2013;	Friston,	2009),	playing
a	fundamental	role	in	cognitive	development	(McClelland,	1994).

Distributed	Representation

In	a	previous	section,	we	noted	that	many	connectionist	networks	utilize	distributed	representations,	in	which	a
relevant	stimulus	is	represented	by	the	pattern	of	activation	across	an	entire	layer	of	units.	There	are	several
benefits	to	using	a	distributed	coding	scheme	that	makes	it	an	especially	powerful	tool	for	thinking	about	cognitive
processing	(for	an	early	review,	see	Hinton,	McClelland,	&	Rumelhart,	1986).	First,	learning	distributed
representations	naturally	results	in	a	system	that	can	efficiently	and	automatically	retrieve	memories	(specific
patterns	of	activation	across	the	units	that	have	been	encountered	before)	based	on	partial	input	cues	(activating
a	subset	of	these	units).	Technically	speaking,	this	is	known	as	content-addressable	memory.	We	observed	this
phenomenon	earlier	when	we	described	an	example	of	a	single-layer	network	that	self-organized	via	Hebbian
learning,	noting	that	it	seems	to	capture	something	quite	fundamental	about	how	human	memory	works.

The	second	advantage	is	a	built-in	means	of	representing	the	similarity	of	different	items,	which	plays	an	important
role	in	cognitive	processes	like	generalization	and	inference.	In	essence,	two	items	are	represented	as	similar	to
the	extent	that	there	is	overlap	in	the	activation	patterns	they	produce	over	a	set	of	distributed	units.	To	pump	your
intuition	on	why	this	is	the	case,	consider	a	network	layer	consisting	of	two	units	and	imagine	a	graph	where	the	x-
axis	represents	the	activation	of	one	of	the	units	and	the	y-axis	represents	the	activation	of	the	other	unit.	This
two-dimensional	graphical	space	can	be	used	to	plot	all	possible	combinations	of	activation	over	those	two	units.
Just	as	in	a	normal	scatter	plot,	two	points	that	are	close	together	on	the	graph	would	be	more	similar	than	two
points	that	are	very	far	apart	(i.e.,	in	terms	of	unit	activations).	Thus,	a	simple	geometric	function	(the	distance
between	these	points)	can	be	used	to	determine	how	similar	two	patterns	of	activation	are.	This	logic	can	be
extended	to	an	arbitrary	number	of	dimensions,	in	which	each	dimension	would	correspond	to	another	unit	in	the
layer.	Higher	dimensional	spaces	allow	a	network	to	represent	very	complicated	similarity	structures	that	may	be
present	in	the	input	patterns,	including	hierarchical	and	contextual	relationships	(Elman,	1990;	Rogers	&
McClelland,	2004;	Saxe,	McClelland,	&	Ganguli,	2013;	Thibodeau,	Flusberg,	Glick,	&	Sternberg,	2013).	Furthermore,
these	networks	will	naturally	treat	similar	stimuli	in	a	similar	fashion	(i.e.,	generalize	based	on	similarity),	which
allows	these	models	to	make	inferences	about	novel	stimuli	that	were	never	presented	during	training.

A	third	advantage	is	that	distributed	representations	are	relatively	robust	and	resistant	to	damage.	Because	an	item



Connectionism and the Emergence of Mind

Page 12 of 22

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All Rights
Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford
Handbooks Online for personal use (for details see Privacy Policy).
Subscriber: Oxford University Press - Master Gratis Access; date: 05 November 2014

or	event	is	represented	across	a	whole	layer	of	units,	damaging	a	single	unit	or	connection	in	the	network	will	not
eliminate	all	of	the	knowledge	the	network	has	about	it.	Although	the	overall	performance	of	the	network	may
suffer,	it	will	still	succeed	to	a	certain	degree.	Indeed,	performance	will	often	gracefully	degrade	with	increased
amounts	of	damage,	which	mirrors	research	on	the	way	brain	damage	affects	human	behavior.	This	is	one	of	the
reasons	a	majority	of	researchers	assume	that	the	brain	itself	relies	on	a	distributed	coding	scheme	(even	though
some	studies	have	found	that	individual	neurons	often	respond	to	very	specific	items,	such	as	Jennifer	Aniston;
Quiroga,	Reddy,	Kreiman,	Koch,	&	Fried,	2005;	see	Plaut	&	McClelland,	2010,	for	discussion).	Indeed,	it	makes
intuitive	sense	that	whenever	we	encounter	an	item	or	event	in	the	environment,	we	experience	a	complex	pattern
of	activity	across	many	thousands	or	millions	of	neurons.	What’s	more,	connectionist	models	have	been	effective
at	simulating	and	explaining	the	symptoms	of	a	wide	range	of	neurological	disorders	that	result	from	damage	or
degeneration	of	the	brain,	including	semantic	dementia	(e.g.,	Dilkina,	McClelland,	&	Plaut,	2008)	and	acquired
dyslexia	(e.g.,	Plaut,	McClelland,	Seidenberg,	&	Patterson,	1996).

A	final	important	point	about	learning	in	multilayer	networks	is	that	the	similarity	structure	of	the	internal
representations	these	networks	learn	is	not	simply	a	direct	reflection	of	similarities	in	the	inputs	or	target	patterns
used	to	train	the	network.	Such	learned	similarity	structure	is	an	essential	feature	that	allows	these	networks	to
capture	abstract	functional	relations,	such	as	those	required	to	capture	the	structure	of	natural	language,	as	we
will	see	in	the	next	section.

To	understand	how	the	principles	of	learning	and	distributed	representation	can	result	in	surprisingly	powerful
cognitive	behavior,	we	turn	now	to	a	discussion	of	another	classic	connectionist	model,	the	simple	recurrent
network.

The	Simple	Recurrent	Network

Temporal	Patterns

When	we	look	at	a	single	word,	we	seem	to	experience	it	all	at	once,	an	observation	that	is	built	into	the	design	of
the	IA	model,	in	which	a	letter	string	input	is	processed	in	parallel	at	multiple	levels	of	abstraction	simultaneously.
When	we	read	a	sentence	or	listen	to	spoken	language,	however,	the	event	unfolds	over	time.	Indeed,	complex
actions,	musical	compositions,	board	games,	and	many	other	activities	have	this	sort	of	temporal	quality.	These
episodes	are	not	chaotic	assemblies	of	random	events,	either;	rather,	they	all	possess	a	particular	structure	or
texture.	For	example,	the	order	of	words	in	a	sentence	seems	to	conform	to	a	set	of	patterns	or	rules	defined	by
the	syntax	of	the	language	(e.g.,	in	English,	a	sentence	must	consist	of	a	subject	noun	phrase	and	a	predicate
verb	phrase,	and	these	elements	canonically	occur	in	that	order).	Traditionally,	researchers	have	therefore
assumed	that,	to	process	language,	we	need	to	explicitly	represent	these	syntactic	rules	and	use	that	knowledge
to	properly	parse	what	we	are	hearing	or	reading	(Chomsky	1968;	Pinker,	1984;	1999).	If	we	did	not	represent	the
rules	of	grammar	explicitly,	how	could	we	routinely	generate	and	understand	novel	sentences?	At	this	point,	you
will	not	be	surprised	to	find	out	that	a	connectionist	model	might	help	shed	light	on	this	issue.

Model	Architecture

Click	to	view	larger
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Figure	4 .	A	schematic	of	the	simple	recurrent	network	(SRN).	It	functions	much	like	standard	feed-forward
network,	except	the	pattern	of	activation	over	the	hidden	layer	units	is	always	copied	in	a	one-to-one
fashion	to	units	in	the	context	layer,	so	at	time	t	the	pattern	of	activation	over	the	context	units	would	be
the	same	as	the	pattern	of	activation	over	the	hidden	units	at	time	t	−	1.

Elman	(1990)	created	the	SRN	to	determine	whether	(and	how)	connectionist	models	could	learn	complex	patterns
in	sequences	that	unfold	over	time.	A	schematic	of	the	model	architecture	is	depicted	in	Figure	4.	As	you	can	see,
the	model	looks	somewhat	like	the	three-layer,	feed-forward	networks	we	examined	earlier.	The	units	in	the	input
layer	receive	information	from	the	environment	and	propagate	this	activity	to	the	units	in	the	output	layer,
traversing	the	units	in	the	hidden	layer.	However,	the	hidden	units	also	send	signals	to	another	layer	that	consists
of	context	units.	The	weights	connecting	the	hidden	layer	to	the	context	layer	are	fixed	at	full	strength,	so	the
activation	over	the	hidden	units	is	simply	copied	to	the	context	layer	at	a	one	time-step	delay.	This	means	that	at
time	t	+	1,	the	activation	over	the	context	units	is	the	same	as	the	activation	over	the	hidden	units	at	time	t.	The
context	units	then	propagate	their	activity	back	to	the	hidden	units	via	weights	that	are	free	to	change	over	the
course	of	training.	This	is	where	the	notion	of	“recurrence”	comes	in	since	the	hidden	units	integrate	information
about	the	current	input	state	as	well	as	their	own	previous	activation	state.	You	can	think	of	this	as	sort	of	like	a
short-term	memory	for	the	network	(“what	was	my	internal	experience	a	second	ago?”),	although	that	is	only
shorthand.	In	fact,	because	the	network	will	experience	a	structured	sequence	of	inputs,	the	activation	of	the
context	layer	does	not	just	provide	information	about	the	previous	time	step,	but	potentially	about	several	previous
time	steps—and	at	the	same	time,	predictions	about	future	time-steps! 	To	understand	why,	and	what	the
consequences	of	this	sort	of	architecture	might	be,	we	must	examine	the	tasks	that	the	network	was	designed	to
engage	in.

Finding	Structure	in	Time

Elman	presented	the	SRN	with	an	ordered	sequence	of	stimuli	one	at	a	time	at	the	input	layer	and	asked	the
network	to	respond	with	the	next	item	in	the	sequence	at	the	output	layer.	In	other	words,	this	model	was	explicitly
set	up	as	a	prediction	machine.	The	actual	next	item	in	the	sequence	would	serve	as	the	target	activation	pattern
to	calculate	the	prediction	error	signal,	which	was	used	to	modify	the	weights	via	the	backpropagation	learning
algorithm	during	training.	In	one	simulation,	the	stimuli	consisted	of	English	letters,	each	of	which	was	represented
by	a	distributed	pattern	of	activation	over	five	input	units.	The	network	was	presented	with	one	letter	at	a	time	and
tasked	to	predict	the	next	letter	in	the	sequence.	The	input	sequences	consisted	of	words	arranged	into	sentences
like:

MANYYEARSAGOABOYANDGIRLLIVEDBYTHESEA

When	the	network	was	presented	with	the	first	“A”	to	appear	in	this	sequence,	therefore,	it	was	supposed	to
produce	the	representation	for	the	letter	“N”	over	the	output	units.	When	it	was	presented	with	the	second	“A”	four
time	steps	later,	however,	it	was	supposed	to	produce	the	letter	“R”	over	the	output	units.	In	other	words,	the
sentence	context	determined	what	the	appropriate	output	should	be	for	a	given	input	letter.	The	network	was
trained	on	200	sentences	ranging	from	four	to	nine	words	long,	drawing	on	a	pool	of	15	different	words.	This
yielded	a	total	of	1,270	words	and	4,963	individual	letter	inputs	during	training.

What	was	striking	was	what	happened	when	Elman	graphed	the	prediction	error	(technically,	the	sum	over	the
output	units	of	the	square	of	the	difference	between	the	target	value	and	the	network’s	output)	for	each	letter	in	the
sequence	after	the	training	phase.	On	the	whole,	the	error	signal	was	very	high	for	letters	appearing	at	the
beginning	of	a	word	but	gradually	decreased	for	letters	within	that	word	(see	Figure	5).	When	the	first	letter	of	the
next	word	or	sentence	appeared,	though,	the	error	signal	shot	back	up.	Thus,	prediction	error	accuracy	can	be
thought	of	as	a	proxy	measure	of	what	sequences	of	letters	the	network	perceived	to	be	words	in	the	input.
Because	each	word	appeared	multiple	times	during	training,	the	network	was	able	to	learn	the	patterns	governing
the	relationship	between	the	letters	within	these	words	and	thus	extract	these	nonrandom	units	out	of	a	continuous
stream	of	sequenced	letter	inputs.	This	is	another	case	in	which	a	particular	type	of	knowledge	(i.e.,	of	word
boundaries)	emerges	naturally	out	of	a	system	based	on	distributed	processing	and	representation	that	is	simply
learning	to	predict	what	will	happen	next.	In	recent	years,	research	on	infants	and	adults	has	shown	that	humans
are	in	fact	quite	sensitive	to	these	sorts	of	statistical	relationships	in	sequences	(e.g.,	Saffran,	Aslin,	&	Newport,
1996).

2
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In	another	simulation,	Elman	used	a	different	distributed	pattern	to	represent	each	of	29	different	words	as	inputs
and	targets	for	the	network.	The	words	included	different	types	of	nouns	(e.g.,	man,	woman,	cat,	cookie)	and	verbs
(e.g.,	think,	move,	break).	He	then	generated	10,000	different	sentences	by	combining	the	words	according	to	one
of	a	number	of	different	simplified	syntactic	frames	(e.g.,	noun	+	transitive	verb	+	noun).	The	network	was
presented	with	all	of	these	sentences	one	word	at	a	time	during	training,	and	its	goal	was	to	predict	the	next	word
in	each	sentence.	Once	again,	the	network	was	able	to	learn	the	temporal	patterns	in	the	input	sequence	quite
well.	(The	network’s	outputs	could	be	understood	as	weighted	averages	of	the	possible	successors	of	the	input
word	in	the	given	context:	in	similar	simulations	in	which	each	word	was	represented	by	activating	just	a	single
input	unit,	Elman	found	that	when	it	was	given	a	noun	at	the	input,	the	units	representing	verbs	would	become	more
active	at	the	output	layer	[compared	to	nouns],	and	verbs	that	tended	to	appear	after	that	particular	noun	during
training	would	be	the	most	active).

Click	to	view	larger

Figure	5 .	The	graph	on	the	left	shows	the	prediction	error	signal	for	each	letter	in	the	simple	recurrent
network	(SRN)	letter	sequence	learning	task	after	training.	Note	that	letters	with	higher	errors	signal	the
beginnings	of	words,	and	error	drops	steadily	as	the	word	unfolds	before	shooting	up	again	at	the	start	of
the	next	word.	The	graph	on	the	right	is	a	cluster	diagram	depicting	the	similarity	relationships	between	the
internal	representations	of	the	words	in	the	SRN	sentence	learning	task	after	training.	Note	that	the	network
clusters	words	by	both	grammatical	category	(nouns	vs.	verbs)	and	meaning	(animates	vs.	inanimates).
From	J.	L.	Elman,	Finding	structure	in	time.	Cognitive	Science,	14,	179–211.	figure	6,	page	194;	right	panel
from	J.	L.	Elman,	Finding	structure	in	time.	Cognitive	Science,	14,	179–211.	figure	7,	page	200.	Reprinted
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Additional	analyses	revealed	just	how	much	the	network	had	learned	about	both	the	syntax	and	semantics	of	the
linguistic	environment.	Elman	examined	the	similarity	structure	of	the	hidden	unit	activation	patterns	associated
with	each	input	(we	explored	the	logic	of	this	sort	of	analysis	earlier	in	our	discussion	of	the	advantages	of
distributed	representations).	Although	the	internal	representations	were	unique	for	each	word,	the	verbs	formed
one	large	cluster	(i.e.,	their	activation	patterns	were	all	somewhat	similar	to	one	another),	while	the	nouns	formed
another	cluster	(see	Figure	5).	What’s	more,	within	each	of	these	larger	clusters,	the	network	was	sensitive	to	a
surprising	range	of	grammatical	and	semantic	distinctions.	For	example,	patterns	for	transitive	verbs	(those	that	are
followed	by	an	object,	like	saw,	as	in	John	saw	a	dog)	formed	one	cluster	while	patterns	for	intransitive	verbs	(those
that	do	not	have	objects,	like	slept)	formed	another,	and	patterns	for	animate	nouns	clustered	separately	from
inanimate	nouns.	The	network	was	even	sensitive	to	the	concept	of	gender,	clustering	girl	and	woman	together
and	boy	and	man	together.	Thus,	the	network	seemed	to	learn	to	differentiate	the	words	according	to	both
grammatical	category	and	meaning.

Now,	remember,	the	only	thing	the	network	was	ever	explicitly	doing	was	attempting	to	predict	the	next	word	in	a
sentence,	and,	critically,	none	of	the	syntactic	or	semantic	properties	of	words	was	explicitly	represented	in	the
patterns	Elman	used	to	train	the	network.	Thus,	these	grammatical	and	semantic	representations	in	the	hidden	unit
activations	emerged	as	a	consequence	of	learning:	that	is,	modifying	the	weights	so	that	these	patterns	of	activity
appeared	given	a	particular	input	word	occurred	simply	through	the	process	of	error-driven	learning.	In	a	sense,
then,	the	network	has	learned	something	about	the	grammatical	categories	and	co-occurrences	of	members	of
these	categories	that	structured	the	language	to	which	it	was	exposed	(e.g.,	nouns	tend	to	be	followed	by	verbs;
transitive	verbs	are	followed	by	object	nouns,	but	intransitive	verbs	are	not).	And	yet	nowhere	does	it	explicitly
represent	these	categories	or	rules	of	syntax.	Similarly,	it	has	learned	something	about	which	words	have	similar	or
conceptually	related	meanings	(e.g.,	woman	and	girl;	man	and	boy)	but	only	because	these	words	tend	to	be	used
in	similar	contexts	in	the	language,	and	thus	they	tend	to	predict	similar	words.

Lessons	Learned

Research	using	the	basic	SRN	architecture	to	simulate	other	(and	more	advanced)	facets	of	language	processing
has	been	widespread	in	the	past	20	years.	As	one	key	example	(Elman,	1993),	these	models	were	able	to	learn
how	to	exploit	long-distance	dependencies	thought	to	require	explicit	representation	of	complex	grammatical	rules.
That	is,	in	the	sentence	“The	boy	who	chased	the	girls	like?	ice	cream,”	the	model	could	learn	that	it	should	add	a
letter	“s”	to	the	verb	“like”	(where	we	have	a	“?”)	so	that	this	verb	agrees	in	number	with	the	grammatically
correct	(but	distant)	noun	phrase	“the	boy,”	rather	than	the	nearby	“the	girls.”	Advanced	versions	of	these	models
are	now	used	in	state-of-the-art	machine	language	processing	systems	(Socher	et	al.,	2013).

The	architecture	has	also	been	extended	to	other	domains	that	seem	to	depend	on	learning	complex,	structured
sequences.	Botvinick	and	Plaut	(2004),	for	example,	used	this	type	of	network	to	simulate	the	ability	to	learn	and
execute	everyday	sequences	of	actions	like	making	a	cup	of	tea.	Routine	actions	like	this	are	hierarchically
structured:	the	larger	action	of	“making	tea”	consists	of	smaller	actions	like	“boiling	water,”	which	consists	of
smaller	actions	like	“reach	into	the	cupboard	and	grab	the	teapot,”	and	so	on.	Traditional	explanations	for	how	we
learn	these	actions	invoked	the	formation	of	explicit	action	schemas	(analogous	to	the	room	schemas	we
described	earlier)	that	organize	knowledge	in	a	structured	fashion.	Botvinick	and	Plaut	(2004)	showed	that	an	SRN
model	could	learn	these	action	sequences	in	a	flexible	and	context-dependent	way	without	explicitly	representing
this	hierarchical	information.	In	other	words,	“schematic”	knowledge	might	simply	be	an	emergent	product	of	a
cognitive	agent	learning	about	action	sequences	that	have	a	particular	type	of	structure.

The	key	lesson	we	wish	to	highlight	in	this	section	is	as	follows:	connectionist	models	are	exquisitely	sensitive	to
the	statistical	structure	in	their	environment	(i.e.,	the	items	and	sequences	of	items	that	they	are	trained	with).	They
can	extract	this	structure	in	a	fairly	straightforward	manner,	even	when	this	information	is	embedded	in	temporally
extended	sequences,	via	a	domain-general	learning	process	that	forms	distributed	representations	of	the	input.
This	does	not	require	any	explicit	representation	of	the	rules	that	appear	to	govern	regularities	in	the	input.
Nonetheless,	over	the	course	of	development,	a	network	may	acquire	implicit	knowledge	that	approximates	these
sorts	of	rules	(at	least	to	the	extent	that	this	helps	the	network	make	predictions	about	the	environment).	Yet	again,
behavior	indicating	sensitivity	to	the	regularities	in	a	domain	like	language	does	not	imply	the	existence	of
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knowledge	of	explicit	rules	that	capture	these	regularities	within	the	cognitive	system.	Behavior	that	conforms	to
certain	regular	patterns	may	be	the	emergent	consequence	of	a	more	basic	set	of	computational	principles	that
includes	statistical,	error-driven	learning	and	distributed	representation.

Future	Directions

Connectionist	ideas	have	been	floating	around	since	the	early	days	of	psychological	science,	and,	with	ongoing
methodological	and	theoretical	advances,	the	future	looks	especially	promising.	On	the	technical	side,	new
learning	algorithms,	training	procedures,	and	network	architectures	will	continue	to	enhance	the	power	and
versatility	of	PDP	models.	In	recent	years,	for	instance,	researchers	have	made	strides	creating	networks	that	can
self-organize	with	additional	layers	of	processing	units,	which	increases	their	ability	to	simulate	human	levels	of
performance	in	pattern	recognition	tasks	like	object	and	letter	perception	(Hinton,	2007).	Before	these	recent
innovations,	adding	an	additional	layer	to	a	network	drastically	affected	training	times,	making	such	networks
impractical	for	use	in	some	settings,	but	novel	training	schemes	are	now	available	to	wire	up	multiple	layers
relatively	efficiently.	Such	models	are,	at	present,	the	state	of	the	art	in	machine	perception—for	example,	they	are
being	used	in	smartphone	devices	to	recognize	speech	(Deng,	Hinton,	&	Kingsbury,	2013).	Continued	progress	in
the	development	of	new	learning	procedures	promises	to	help	bridge	the	gap	between	human	and	network
performance,	as	well	as	yielding	many	practical	applications	in	the	realms	of	machine	learning	and	artificial
intelligence.

Additional	technical	advances	should	help	us	understand	how	and	why	connectionist	models	work	the	way	they	do
at	a	more	precise,	mathematical	level	of	explanation.	Connectionist	models	are	sometimes	criticized	for	being	too
opaque	or	mysterious	because	it	is	not	always	obvious	how	or	why	a	particular	networks	works,	just	that	the
learning	algorithm	has	led	the	model	to	converge	on	one	possible	solution	to	a	problem.	However,	researchers
have	started	to	apply	advanced	analytic	techniques	to	uncover	the	principles	governing	individual	network
behavior.	For	example,	behavioral	research	has	shown	that	semantic	development	in	children	follows	a	specific
developmental	trajectory:	children	learn	to	make	broader	conceptual	distinctions	(plant	vs.	animal)	before	they
make	finer	ones	(bird	vs.	fish),	and	they	typically	show	sudden,	stage-like	transitions	throughout	this	period	rather
than	a	gradual	shift	in	performance.	Rogers	and	McClelland	(2004)	showed	that	these	and	related	findings	could	be
captured	by	a	particular	class	of	feed-forward	neural	network.	Recently,	Saxe,	McClelland,	and	Ganguli	(2013)
have	formally	demonstrated	why	the	learning	dynamics	of	these	networks	results	in	this	particular	pattern	of
development.	In	particular,	they	used	mathematical	analyses	to	link	the	learning	dynamics	of	these	models	to	the
pattern	of	similarity	relationships	among	the	training	patterns.	For	example,	they	showed	that	when	the	similarity
relationships	can	be	well-captured	by	a	branching	tree,	learning	will	inevitably	follow	this	particular	developmental
trajectory.	This	type	of	work	promises	to	bring	a	new	level	of	rigor	and	precision	to	the	construction	and	use	of
connectionist	networks	in	a	variety	of	domains.

Related	approaches	to	classifying	network	behavior	will	also	help	researchers	identify	the	key	similarities	and
differences	between	connectionism	and	other	modeling	frameworks	in	the	cognitive	sciences.	This	may	help	bridge
some	of	the	theoretical	gaps	that	currently	exist	between	camps	and	point	the	way	toward	a	more	unified
understanding	of	cognition	and	behavior.	For	instance,	connectionist	models	can	be	shown	to	approximate	the
behavior	characteristic	of	probabilistic	Bayesian	models	(McClelland,	2013),	an	increasingly	popular	approach	that
casts	cognition	as	an	optimal,	probabilistic	inference	under	uncertainty	(for	review,	see	Tenenbaum,	Kemp,
Griffiths,	&	Goodman,	2011).	At	the	same	time,	however,	connectionist	networks	seem	to	allow	for	more	flexible	and
context-sensitive	behavior	and	greater	integration	with	what	we	know	about	brain	structure	and	function
(McClelland	et	al.,	2010).

The	behavior	of	connectionist	models	can	also	be	described	using	the	language	of	dynamical	systems	theory
(DST),	a	mathematical	framework	that	specifies	the	change	in	the	state	of	a	system	over	time	(McClelland	&
Vallabha,	2009).	Cognitive	scientists	have	increasingly	used	the	formalism	of	DST	because	it	naturally	captures	the
temporal	dynamics	of	perception	and	action	as	they	unfold	in	real	time	for	physical	agents	embedded	in	physical
environments	while	avoiding	some	of	the	philosophical	pitfalls	associated	with	traditional,	representational	theories
of	mind	(Chemero,	2009;	Thelen	&	Smith,	1994).	Connectionist	models	not	only	display	their	own	pattern	of	internal
dynamics	over	time	(which	can	be	described	by	DST),	but	researchers	can	actually	use	these	networks	as	control
mechanisms	or	“brains”	inside	simulated	or	real-world	robots.	In	this	case,	the	network	becomes	just	one	element
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of	a	larger	dynamical	system	that	includes	the	body	and	structure	of	the	robot	and	the	environment	the	robot	is
situated	in	(Beer,	2003;	Chemero,	2009).	Thus,	connectionist	models	and	dynamical	systems	approaches	can	be
complementary	(Spencer,	Thomas,	&	McClelland,	2009).

Another	exciting	development	is	the	use	of	connectionist	methods	to	explain	the	nature	and	origin	of	some	of	the
most	sophisticated	aspects	of	human	cognition,	from	reasoning	with	metaphor	and	analogy	to	mathematical
problem	solving.	Traditionally,	these	hallmarks	of	human	intelligence	have	been	offered	as	proof	of	domain-specific
cognitive	mechanisms	that	require	the	use	of	explicit,	structured,	symbolic	representations.	Recently,	however,
there	has	been	a	great	deal	of	progress	in	our	understanding	of	how	these	high-level	abilities	might	emerge	in	a
distributed	connectionist	network.	For	example,	Leech,	Mareschal,	and	Cooper	(2008)	showed	that	a	connectionist
model	could	learn	to	solve	basic	analogy	problems	by	treating	them	as	a	form	of	relational	priming.	More	recently,
Thibodeau	and	colleagues	(2013)	adapted	the	network	used	by	Rogers	and	McClelland	(2004)	to	simulate
semantic	development	in	order	to	simulate	our	capacity	to	draw	analogical	inferences	between	two	structurally
similar	domains	(see	also	Kollias	&	McClelland,	2013).	These	demonstrations	not	only	advance	our	understanding
of	the	capabilities	of	connectionist	models,	but	they	also	provide	a	new	way	of	thinking	about	higher	level	cognitive
functions	in	general.	That	is,	some	forms	of	analogical	reasoning	may	not	require	specialized	cognitive	machinery
but	may	arise	spontaneously	over	the	course	of	development	due	to	the	operation	of	a	domain-general	learning
mechanism	and	a	particular	set	of	architectural	constraints	(see	also	Rogers	&	McClelland,	2008).

Flusberg	and	colleagues	(2010)	took	a	very	similar	approach	to	shed	light	on	the	mechanisms	that	support	our
ability	to	conceive	of	abstract	concepts	like	time,	justice,	and	the	mind.	We	tend	to	use	metaphors	and	analogies	to
talk	about	these	abstract	domains,	borrowing	language	that	is	commonly	used	to	describe	more	concrete	aspects
of	experience	(Lakoff	&	Johnson,	1980).	For	example,	we	use	spatial	language	to	talk	about	time,	as	when	we	say,
“those	long	meetings	are	close	together.”	Behavioral	research	has	shown	that	priming	people	to	think	about	space
can	impact	their	reasoning	about	time,	suggesting	that	we	really	do	think	metaphorically	in	some	sense	(e.g.,
Boroditsky	&	Ramscar,	2002).	Flusberg	et	al.	(2010)	used	a	connectionist	model	to	show	that	this	pattern	of
behavior	is	a	natural	consequence	of	a	semantic	system	that	integrates	linguistic	and	perceptual	information
throughout	learning	but	only	when	the	specific	concrete	and	abstract	domains	share	some	relational	structure.

Part	of	the	theoretical	motivation	for	this	work	comes	from	the	increasingly	popular	embodied	approaches	to
cognitive	science,	which	includes	the	dynamical	systems	ideas	outlined	earlier.	Proponents	of	the	embodied	view
suggest	that	cognition	is	grounded	in	sensory-motor	processing	and	shaped	and	constrained	by	the	physical
structure	of	the	agent	and	the	environment	it	is	situated	in	(Chemero,	2009;	Clark,	1997;	Gibbs,	2006).	The	fact
that	even	abstract	thinking	seems	to	be	grounded	in	more	concrete	physical	experiences	lends	support	to	these
ideas.	We	see	the	fusion	of	embodied	and	connectionist	ideas	as	an	important	synthesis	because	the	body	of	any
agent	will	influence	the	information	that	the	brain	of	the	agent	has	access	to.	In	other	words,	the	input	patterns	that
a	neural	network	learns	about	are	necessarily	constrained	by	the	physical	structure	of	the	agent	itself.	Taken
together,	these	trends	suggest	that	connectionism	will	prove	to	be	an	invaluable	tool	for	researchers	interested	in
understanding	not	just	how	the	brain	supports	cognitive	functioning,	but	how	the	brain,	body,	and	world	function
together	and	evolve	over	the	course	of	development.

Conclusion

In	our	introduction,	we	noted	that	cognitive	scientists	are	interested	in	reconciling	the	manifest	image	of	everyday
experience,	which	includes	mental	phenomena	like	perceptions	and	memories,	with	the	scientific	image	of	the
universe,	which	is	characterized	by	physical	phenomena	like	molecules	and	neurons	(Dennett,	2013;	Sellars,
1963).	In	this	chapter,	we	have	tried	to	demonstrate	how	connectionism	offers	a	unique	set	of	computational	and
theoretical	tools	for	addressing	this	perennial	issue.

Connectionist	models	are	inspired	by	the	principles	of	information	processing	that	characterize	the	structure	and
function	of	the	brain:	namely,	a	large	number	of	simple	processing	units	linked	together	into	complex	networks	that
communicate	in	parallel	via	connections	of	varying	strength	that	can	be	modified	by	experience.	These	networks
can	extract	complex	statistical	patterns	from	their	input	and	naturally	settle	on	solutions	to	constraint	satisfaction
problems	through	the	interactions	of	their	constituent	parts.	These	properties	endow	connectionist	models	with	the
ability	to	exhibit	complex	behavior	that	mirrors	human	cognitive	performance	in	many	domains,	from	perception
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and	memory	to	language	processing	and	analogical	inference.	Although	traditional	approaches	tend	to	treat	these
psychological	functions	as	distinct	processes	that	must	be	explicitly	instantiated	in	a	cognitive	model,
connectionism	considers	how	a	basic	set	of	computational	principles	might	give	rise	to	many	different	forms	of
complex	behavior.	In	other	words,	an	emphasis	is	placed	on	the	commonalities	underlying	various	cognitive
abilities	rather	than	on	their	differences.	Although	it	may	appear	as	though	behavior	in	a	given	domain	is	governed
by	a	specially	engineered	process	or	set	of	rules,	the	connectionist	lesson	is	that	these	rules	need	not	be	explicitly
represented	in	the	cognitive	system.

A	useful	analogy	can	be	made	to	the	work	of	Charles	Darwin.	The	structure	and	organization	of	the	biological	world
has	the	appearance	of	design,	and	so	it	was	long	assumed	that	to	explain	this	appearance	we	had	to	posit	an
intelligent	designer	(i.e.,	God).	However,	Darwin’s	theory	of	evolution	by	natural	selection	showed	how	the
appearance	of	design	could	emerge	from	simpler	processes	of	competition,	variation,	and	heredity	operating	over
the	(long)	course	of	history.	It	may	sometimes	be	useful	to	talk	about	natural	selection	itself	“designing”	certain
traits	as	if	it	were	an	engineer	that	could	create	an	optimal	solution,	but	a	closer	look	at	the	microstructure	of
organisms	reveals	many	elements	that	do	not	fit	the	design	framework.	Indeed,	the	evolutionary	biologist	Stephen
Jay	Gould	argued	that	“poor”	design	elements	in	nature	are	some	of	the	best	evidence	for	evolution	(Gould,	1980).
For	instance,	the	peculiar	“thumb”	that	pandas	use	to	grasp	their	food	is	not	a	finger	at	all	(the	panda	already	has
five),	but	an	enlarged	radial	sesamoid	bone.	Gould	points	out	that	it	is	far	from	an	ideal	solution,	but	one	dictated	by
structures	already	available	in	the	bears	from	which	the	panda	descended	and	that	its	evolution	likely	occurred
through	a	mutation	that	produced	benign	but	unnecessary	side	effects.

In	a	similar	way,	a	great	deal	of	human	behavior,	from	decision	making	to	language	comprehension,	can	often	be
described	as	being	highly	structured	and	governed	by	underlying	rules.	Thus,	it	was	long	assumed	that	we	had	to
posit	specialized	internal	mechanisms	that	explicitly	instantiated	the	appropriate	plans	for	each	cognitive	faculty	or
complex	behavior.	In	fact,	a	closer	look	at	human	behavior	often	reveals	that	much	of	it	is	less	rigidly	rulelike	than
it	appears	at	first	blush,	as	we	saw	in	the	case	of	context	effects	in	letter	perception	and	the	putative	role	of
orthographic	rules.	Connectionist	modeling	is	important	because	it	shows	us	how	complex,	rulelike	behavior	can
emerge	from	simpler	processes	interacting	with	one	another	in	a	mutually	constraining	fashion	(often	over	a	period
of	learning	and	development).

Some	scholars,	inspired	as	we	are	by	Borges’s	mapmaking	fable,	might	argue	that	it	is	in	fact	a	useful	and
worthwhile	simplification	to	describe	individual	cognitive	functions	or	behaviors	by	appealing	to	domain-specific
rules	and	principles.	Although	we	agree	this	can	sometime	provide	a	useful	simplification,	if	taken	as	literally
correct,	it	can	be	misleading.	One	needs,	for	example,	to	then	provide	a	mechanism	for	constructing	rules	or	for
replacing	rules	used	at	one	stage	of	development	with	better	ones	used	at	later	stages.	If	one	sees	the	rules	as
approximate	characterizations	of	the	emergent	properties	of	the	underlying	mechanism,	a	mechanism	for
constructing	rules	and	replacing	them	with	others	may	no	longer	be	necessary.	Thus,	connectionist	models
support	a	novel	way	of	thinking	about	the	nature	and	origins	of	mental	life	as	the	emergent	consequence	of	a
system	that	is	based	on	principles	of	parallel	processing,	distributed	representation,	and	statistical	learning	that
interacts	with	its	environment	over	the	course	of	development.
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