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Abstract The nature of capacity limits (if any) in visual
search has been a topic of controversy for decades. In 30 years
of work, researchers have attempted to distinguish between
two broad classes of visual search models. Attention-limited
models have proposed two stages of perceptual processing:
an unlimited-capacity preattentive stage, and a limited-
capacity selective attention stage. Conversely, noise-limited
models have proposed a single, unlimited-capacity perceptu-
al processing stage, with decision processes influenced only
by stochastic noise. Here, we use signal detection methods to
test a strong prediction of attention-limited models. In
standard attention-limited models, performance of some
searches (feature searches) should only be limited by a
preattentive stage. Other search tasks (e.g., spatial configu-
ration search for a “2” among “5”s) should be additionally
limited by an attentional bottleneck. We equated average
accuracies for a feature and a spatial configuration search
over set sizes of 1–8 for briefly presented stimuli. The strong

prediction of attention-limited models is that, given overall
equivalence in performance, accuracy should be better on the
spatial configuration search than on the feature search for set
size 1, and worse for set size 8. We confirm this crossover
interaction and show that it is problematic for at least one
class of one-stage decision models.

Keywords Theoretical and computational attention
models . Visual search . Signal detection theory

In some visual searches, accuracy declines and response time
(RT) slows as more stimuli are added to the display, while in
others, performance is fairly constant as a function of the
number of stimuli (the set size). There have been two
seemingly fundamentally different approaches to understand-
ing these set size effects in visual search. Two-stage theories of
attention (e.g., Broadbent, 1958; Treisman & Gelade, 1980;
Wolfe, Cave, & Franzel, 1989) involve preattentive and
attentive stages in human visual processing. In the preatten-
tive stage, a limited set of visual attributes are processed (e.g.,
color, orientation, motion; see Wolfe & Horowitz, 2004) with
essentially unlimited capacity. Binding more than one feature
to the same object (e.g., specifying the color and orientation
of an object) requires serial access to a limited-capacity
“attentional bottleneck,” leading to set size effects. We will
refer to this class of models as attention-limited models, since
their defining characteristic is that access to a second stage of
attentional processing is capacity limited.

Two-stage, attention-limited models have two loci at
which performance can be influenced: the unlimited-
capacity preattentive stage and the severely limited atten-
tional bottleneck. Some stimuli are largely unaffected by
the bottleneck. “Feature searches,” in which the target is
defined by a salient feature, such as orientation, will
produce a strong preattentive signal that is essentially
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independent of set size. The preattentive stage delivers a
single item, the target, to the attentional bottleneck. Under
some circumstances, the preattentive stage may even generate
a response on its own (e.g., Chan&Hayward, 2009; Treisman
& Gelade, 1980). In any case, processing of these stimuli is
not limited by the attentional bottleneck. Other stimuli are
not differentiable in the preattentive stage, for instance a
“spatial configuration search” for a “2” among “5”s. In this
case, the properties of the preattentive stage are moot, and
the limited-capacity attentional bottleneck governs perfor-
mance. Thus, attention-limited models predict qualitatively
different performance for feature and spatial configuration
stimuli, even within the same yes/no detection task structure.

In contrast, unlimited-capacity models do away with the
attentional bottleneck, and instead conceptualize visual
search as detection of a signal among multiple noise
sources in a single stage (e.g., Carrasco & McElree, 2001;
Davis et al., 2006; Dosher, Han, & Lu, 2004; Eckstein,
Thomas, Palmer, & Shimozaki, 2000; Kinchla, 1974;
Palmer, 1995; Palmer & McLean, 1995; Shaw, 1980;
Verghese, 2001). The observer compares a signal, derived
from processing of the entire display, to a criterion. If the
criterion is exceeded, the observer concludes that the target
is present; if not, the observer concludes that the target is
absent. These models assume unlimited processing capac-
ity, with set size effects arising from the influence of noise
at the decision stage. As set size increases, so do the
number of noise sources from which a target must be
distinguished. With more noise sources come more chances
that some noise in a target-absent display will surpass the
observer’s criterion, causing a false alarm. We will refer to
this class of models as noise-limited models, since they
propose that set size effects arise only from the presence of
more noise sources in higher-set-size displays.

One-stage noise-limited models have been successfully
applied to simple feature searches and moderately difficult
conjunction searches. For targets and distractors that differ
along a single feature dimension (i.e., feature search), set
size effects have been successfully modeled by noise-
limited theories for luminance increments, color differ-
ences, and size increments (Palmer, 1994); contrast and
orientation differences (Eckstein, 1998); line length, rect-
angle aspect ratio and line orientation (Palmer, Ames, &
Lindsey, 1993); mirror-symmetrical orientation differences
(Davis et al., 2006); and asymmetrical orientation differ-
ences (Dosher, Han, & Lu, 2010). Converging evidence for
the above findings comes from Verghese and Nakayama
(1994), who argued that set size effects in feature searches
for orientation, spatial frequency, and color differences
could not be accounted for by a limited-capacity model (i.e.,
a two-stage attention-limited model). For search targets
defined by a conjunction of two features, noise-limited
models can account for set size effects in searches for

luminance × orientation conjunctions (Eckstein, 1998;
Eckstein et al., 2000) and for color × form conjunctions
(McElree & Carrasco, 1999).

However, despite their success at accounting for set size
effects in feature and conjunction search, in several cases in
the literature, noise-limited models have not been able to fully
account for performance decrements as a function of set size.
Palmer (1994, 1995) tested observers on both line bisection
stimuli (e.g., search for an “L” among “T”s) and point
orientation stimuli, and he found that for both searches the
increase in discrimination thresholds as a function of set size
was larger than would be predicted by a decision integration
model (i.e., noise-limited model), but not as large as that
predicted by a perceptual-coding model (i.e., attention-
limited model). Põder (1999) found that stimuli differing in
the relative position of their components yielded set size
effects larger than similar stimuli with a distinctive visual
feature, consistent with limited-capacity processing of the
relative position stimuli. Davis et al. (2006) examined
baseline search for a tilted line among vertical lines,
symmetrical search for a right-tilted line among left-tilted
lines, and asymmetrical search for a vertical line among tilted
lines. They found that a noise-limited model could account
for set size effects for baseline and symmetrical search, but
not for asymmetrical search: Decrements in performance as
set size increased were larger than predicted by an unlimited-
capacity parallel model of asymmetrical search. Davis et al.
(2006) concluded that a serial-process limited-capacity
model was consistent with the asymmetrical search data.
Finally, Shaw (1984) showed that set size effects in searches
for letter stimuli were larger than could be accounted for by a
noise-limited model and were consistent with an attention-
limited serial-process model.

The debate about capacity limits has persisted for
decades because it is quite hard to produce unequivocal
evidence for or against entire model classes. This has been
true for the experiments, reviewed above, involving briefly
presented stimuli. It has also been true for experiments
involving RT measures. The bulk of studies of attention-
limited models with a serial component have been RT
experiments (Dukewich & Klein, 2005; Klein, 1988; Kwak,
Dagenbach, & Egeth, 1991; Luck & Hillyard, 1990).
However, it has been known for many years that the most
common measures based on mean RTs are ambiguous with
respect to the capacity limit question (Townsend, 1990;
Townsend & Wenger, 2004). A few studies have applied
more sophisticated tools to RT data (Bricolo, Gianesini,
Fanini, Bundesen, & Chelazzi, 2002; Gilden, Thornton, &
Marusich, 2010), but the matter remains unresolved.

We do not propose to settle the debate here. Our goal is
to test a clear, qualitative prediction of two-stage attention-
limited models, using the signal detection methods that
have typically been deployed to study predictions of one-
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stage noise-limited models. The term qualitative is important
here. Rather than asking what class of model better fits the
data, we describe a situation in which a two-stage model
must produce a crossover interaction in the data. If it did not
produce this interaction, two-stage models of the type
described above would be falsified. We did find such a
crossover. Of course, this does not mean that two-stage
attention-limited models are true, only that they have dodged
this particular bullet. Similarly, the crossover does not prove
all one-stage noise-limited models to be false. For instance,
Cameron, Tai, Eckstein and Carrasco (2004) modeled two
tasks, a target identification task and yes/no detection task,
and found a similar interaction in their data that was
consistent with their proposed noise-limited model. However,
they were modeling two different tasks on the same stimuli
with two levels of difficulty, while we are modeling the same
task on two different stimuli with the same overall difficulty.
Thus, observing a crossover interaction in our data in and of
itself does not invalidate the noise-limited approach, but it
does pose a challenge to those models, and does eliminate
some classes of such models, notably those that propose the
same decision rule (defined below) for both feature and
spatial configuration stimuli.

The crossover prediction

Consider a briefly presented display of some small number
of items that can all be resolved without moving the eyes.
How do observers make the “yes” or “no” decision to
respond “target present” or “target absent”? According to
signal detection theory (SDT), an observer might sample
some perceptual evidence from each stimulus in the display
and then make a decision about target presence or absence
on the basis of the largest signal (MAX rule). If this
maximum value is greater than some criterion, the observer
responds “target present”; otherwise, a “target absent”
response is given. Under a MAX rule, performance decreases
as set size increases (both hits and false alarms rise, but
false alarms rise faster), because more stimuli means more
chances for a distractor noise sample to exceed criterion
(Green & Swets, 1966). Figure 1a shows simulated results
for such a decision rule.1 Different curves are produced by
different levels of discriminability between target and

distractors. For searches in which the target can be identified
by a single perceptual attribute (e.g., orientation or size), a
MAX rule captures the data quite well (Davis et al., 2006;
Eckstein et al., 2000; Palmer et al., 1993; Verghese, 2001).
Furthermore, Green and Swets (1966) demonstrated that the
MAX rule yields the highest probability of a correct response,
which may explain why it is the most widely used decision
rule in one-stage noise-limited modeling of visual search.
Other rules are possible, however. For example, one could
use a SUM rule in which all signals are added and a “target
present” response is produced if the sum exceeds some
criterion (Baldassi & Burr, 2000). In this case, the shape of
the function in Fig. 1a would change but the parallel nature
of the family of curves would not.

Now suppose that there is a capacity limit that prevents the
processing of all items at the same time, as might happen
under an attention-limited model of search. For purposes of
illustration, let us suppose that the visual system processes
some items serially and that this search display is presented
briefly enough that only a single item can be processed. If the
display was presented for a long time, this two-stage model
would propose that more items would be selected and
processed. If the display set size is 1, the noise-limited one-
stage and attention-limited two-stage models would converge
on a simple signal detection problem: Is the signal from this
one item above or below my criterion for saying “target
present”? If there are two or more items, however, the models
would diverge. As noted, the noise-limited model makes more
errors when there are more noise samples, since there is a
higher chance that one of those samples will exceed the
criterion. The two-stage model, on the other hand, still has
only the one sample from the one item that was selected. If the
one selected item is not the target, the model must guess or just
respond “target absent.” In either case, the prediction must be
that performance falls more dramatically as set size increases
for attention-limited models than it would for the noise-
limited model situation depicted in Fig. 1a. This steeper
performance decline is shown in Fig. 1b, which assumes that
only one item is selected. If more than one item were
selected in a brief exposure, the steep decline in performance
would occur when the set size exceeded the number of
selected items.

Now, suppose that we arrange to have two search tasks
produce the same overall performance, averaged across set
sizes. If one of them is governed by one rule (e.g., the MAX

rule of Fig. 1a) and the other by another rule that produces
a different decline of performance with set size (e.g.,
LIMITED CAPACITY, as in Fig. 1b), the two performance × set
size functions must cross (Fig. 1c). Specifically, if average
performance is equated across set sizes, performance will
be better for the attention-limited search task than for the
noise-limited search task at set size 1 and worse at the
highest set size.

1 We use the standard detectability (d') measure here and in the Results
simply to summarize performance in the search task (hit rates and
false alarm rates), not to estimate underlying perceptual sensitivity,
which requires taking into account the increase in the number of noise
sources with set size. Decreases in this d' measure with set size should
not, in and of themselves, be interpreted as evidence for limited
capacity. In the Appendix, we test the fit of different models to provide
a more formal analysis; this analysis confirms the findings based on d'.
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Two-stage models, such as an attention-limited model,
mandate this crossover interaction. Under these models, some
searches will be performed entirely by the unlimited-capacity
preattentive stage, while other searches will require access to a
second, attention-limited stage of processing. In our guided
search model (Wolfe, 1994, 2007), for example, the selection
of one item would be “guided” by the parallel, noise-limited
preattentive stage. In a search for a basic feature (such as a
search for an item of unique orientation), the limit on that
selection, and thus the limit on performance of the task,
would be in the preattentive stage, and assuming a MAX rule,
performance would fall off as shown in Fig. 1a. In a spatial
configuration task, the preattentive stage in a two-stage model
would provide no information about the presence or location
of the target. Selection would be random, and performance
would follow Fig. 1b. If overall performance is equated for
the two tasks, then there must be a crossover interaction in
the performance × set size functions, as illustrated in Fig. 1c.
We tested this prediction in two experiments.

Experiment 1

The same observers performed the same yes/no decision
task with two different search stimuli. In one condition,
observers searched for a tilted bar among vertical bars.
Orientation discriminations, even for stimuli degraded by
noise, are thought to be processed in parallel across
multiple items (Baldassi & Verghese, 2002; Davis et al.,
2006; Morgan & Solomon, 2006; Palmer et al., 1993). In
the other condition, observers searched for a digital “2”
among digital “5”s. A character discrimination such as “2”
versus “5” may be easy to perform under focal attention,
but in attention-limited theories, the characters are thought
to be preattentively indistinguishable (Wolfe & Bennett,
1997), requiring limited-capacity serial deployments of

attention (Kwak et al., 1991). Typically, an orientation
stimulus difference would be easier to perceive than a “2”
versus “5” stimulus difference. However, we degraded the
orientation stimuli, moving performance below “2” versus
“5” search at set size 1. If performance in the yes/no
decision task for the two different stimuli was governed by
the same decision rule, then orientation stimuli would
remain harder to detect than “2” versus “5” stimuli at all set
sizes, as in Fig. 1a and b. If and only if the two stimuli are
governed by different decision rules, the performance × set
size functions will cross, as in Fig. 1c.

To create conditions for a crossover interaction, we
developed a search task in which the difficulty of
identifying stimuli (i.e., the detectability of targets) could
be adjusted independently of the search stimuli or the set
size. We accomplished this by adding visual noise to each
stimulus (see Fig. 2). Participants performed a yes/no
decision task with set size varying from trial to trial. We
used a weighted staircase procedure (Kaernbach, 1991) to
adjust noise opacity, increasing it after each correct
response and decreasing it after errors, regardless of set
size or target presence or absence. Since one staircase was
run over all set sizes, this procedure controlled average
performance. In this case, the staircase yielded average
performance of 80% correct across all set sizes. With the
same amount of added noise for all set sizes, accuracy
would be above 80% for low set sizes and below 80% for
high set sizes. If performance on each stimulus set was
governed by the same decision rule, this method would
produce the same performance × set size function for both
displays. Otherwise, this method adjusted overall search
performance on each stimulus set into a range in which the
functions could exhibit a crossover interaction. Each
participant completed the staircase procedure, followed by
data collection at a fixed noise level determined by the
staircase.
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Fig. 1 Simulated detectability (d') as a function of the number of
items in the display and the type of decision rule being used. (a) The
d' × set size functions for four different values of signal and noise
distribution distances using the max rule. (b) The d' × set size

functions for the same signal and noise distribution distances using the
limited capacity, one-item rule. (c) Notice that d' × set size functions
only cross over each other if they arise from different decision rules
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We performed two versions of the experiment, one with
a physical variation of set size, and the other with an
attentional variation of set size. In the attentional set size
manipulation (Palmer, 1994), eight items were displayed on
every trial, but only a subset of the items (the relevant set
size for that trial) were cued before the search display
appeared (Fig. 3). The physical set size manipulation

followed the same procedure, except that only the items
that were cued were displayed. All participants completed
both manipulations in random order, in different blocks. If
observers could not restrict attention to the relevant items,
these two manipulations should yield very different results.

Method

Participants A group of 5 observers (1 female, 4 male)
between the ages of 24 and 38 years served as
participants. One of the participants (E.M.P.) was an
author, while the other 4 were naïve. All had normal or
corrected-to-normal visual acuity, passed the Ishihara
color vision test, and gave informed consent. The naïve
participants received $10/h compensation.

Apparatus The stimuli were presented and the data gathered
on an Apple Macintosh G4 450-MHz computer driving
a 20-in. (diagonal) monitor at a resolution of 1,024 ×
768 pixels. Responses were recorded with an Apple
Macintosh USB keyboard. The experiment was controlled
using MATLAB 5.2.1 and the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997).

Stimuli The display background was dark gray with a
central white square that served as a focal point and
subtended 0.8° × 0.8° of visual angle. On each trial, eight
dark gray placeholder squares (each 4.7° × 4.7° of visual
angle) surrounded the central white square in a circle
formation, with a center-to-center distance of 10° of visual
angle between the focal square and the larger stimulus
squares. For orientation search, the target was an oblique
light-gray rectangle (subtending 4.2° × 0.5° visual angle,
tilted 20° clockwise from vertical), and the distractors were
vertical light-gray rectangles. For spatial configuration
search, the target was a light-gray digital “2” and the
distractors were digital “5”s, both subtending 4.2° × 4.2° of
visual angle. Stimuli were separated by at least 2° of visual
angle to reduce crowding effects (Levi, 2008).

Fig. 2 The two types of stimuli
used in the experiment. Orien-
tation stimuli are depicted on the
left, and “2” vs. “5” stimuli are
depicted on the right. Different
amounts of noise were added to
each stimulus in order to bring
overall performance for both
stimuli into the same range of
average performance
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Fig. 3 The timing and display sequence of a set size 4 orientation
stimulus trial. Stimuli were presented for 80 ms and then masked after an
80-ms ISI. Participants had an unlimited amount of time to respond. Both
the attentional and physical set size manipulations are depicted
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The level of visual noise was manipulated by varying
the percentage opacity of a uniform noise field super-
imposed over the stimuli. Noise level was determined
separately for each observer and each stimulus condition
by a staircase procedure. The staircase procedure
increased the opacity by 2.5% after every correct
response and decreased it by 10% after every incorrect
response, regardless of set size or target presence or
absence; these step sizes converged on an accuracy level
of 80% (Kaernbach, 1991). The staircase was run until 40
reversals, then the noise level was set to the average of the
previous 20 reversals. Across the 5 participants, the
average noise levels were 62% (SD 3.5%) for the
orientation stimuli and 31% (SD 18.5%) for the “2” versus
“5” stimuli (higher percentages indicate greater opacity of
the noise field, meaning more obscured stimuli).

Procedure The trial procedure is illustrated in Fig. 3.
Participants sat at a computer in a dark testing room.
Responses were entered on the keyboard, and error
feedback was given after each trial. The observers were
told to prioritize accuracy over speed.

The orientation stimuli and the “2” versus “5”
stimuli, as well as the attentional and physical set size
manipulations, were run in separate blocks in random order.
For each stimulus type and set size, participants practiced at a
low noise level to familiarize them with the task; next, they
completed the staircase procedure; finally, they completed the
experimental trials. Each block of experimental trials con-
sisted of 100 target-present and 100 target-absent trials for
each set size of 1, 2, 4, and 8, for both the physical and
attentional set size manipulations. Participants completed
3,200 experimental trials among well over 4,000 total trials,
including practice and the staircase procedure.

Data analysis For convenience, we converted accuracy to
d', defined as z(hit rate) – z (false alarm rate). For cells with
perfect performance, we added 1 ÷ (2 × number of trials)
errors (Wickens, 2002).

Results

Figure 4 plots performance by set size, averaged across
the 5 observers. Both the physical set size (panel A) and
attentional set size (panel B) manipulations produced a
crossover effect; performance was better on the “2” versus
“5” stimuli than on the orientation stimuli at set size 1, but
was worse on the “2” versus “5” stimuli at set size 8.

These observations were confirmed by a 2 × 2 × 4
(display manipulation × search stimuli × set size)
within-subjects ANOVA. The crossover effect mani-
fested in a significant interaction between search

stimuli (oriented bars or “2”s vs. “5”s) and set size,
F(3, 12) = 40.25, p < .001, ηp

2 = .91. This result,
combined with the lack of a three-way interaction (F =
1.45, p = .28, ηp

2 = .27), indicates that the crossover
interaction was observed independently of the display
manipulation method (physical vs. attentional cue). The
two methods of manipulating set size produced the same
result: Neither the display manipulation effect (F = 2.91,
p = .163, ηp

2 = .42) nor the interaction with set size (F =
1.28, p = .32, ηp

2 = .24) was significant. The lack of a
main effect of search stimuli indicated that our staircase
procedure successfully brought overall performance on
the two stimulus sets into the same range (F = 1.26, p =
.33, ηp

2 = .24). There was a significant main effect of set
size, F(3, 12) = 75.86, p < .001, ηp

2 = .95, and a reliable
interaction of display manipulation × search stimuli, F(1,
4) = 78.85, p < .005, ηp

2 = .95.
To more closely examine the critical interaction of search

stimuli by set size, we averaged performance across the
display manipulations and performed t tests comparing the
orientation stimuli and the “2” versus “5” stimuli for set
sizes 1 and 8. The t tests show that observers performed
reliably better on “2” versus “5” stimuli than on orientation
stimuli at set size 1, t(8) = 2.71, p < .05, d = 1.92, and
reliably worse on “2” versus “5” stimuli than on orientation
stimuli at set size 8, t(8) = 2.51, p < .05, d = 1.77. These
two results, taken in combination with the significant search
stimuli × set size interaction, indicate an unambiguous
crossover interaction.2

Experiment 2

Experiment 1 established that the same observers
performing the same yes/no visual search task with
stimuli of equal overall difficulty used different decision
rules for the different search tasks. However, these
search tasks were performed in different blocks. Perhaps
the decision rules were not a property of the visual
system, but were merely strategies that observers
adopted when faced with blocks of different stimuli.
To address this possibility, we replicated the attentional
set size condition of Experiment 1 but randomly
intermixed the orientation and “2” versus “5” search
stimuli on a trial-by-trial basis. Thus, on any given trial,
observers did not know whether they would be performing
an orientation search or a spatial configuration search.
Observers would need to be very flexible in order to
differentially apply one decision rule on orientation search
trials and another on “2” versus “5” trials.

2 For more detailed model fitting to these data, refer to the Appendix.
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Method

Participants A group of 5 observers (1 female, 4 male)
between the ages of 22 and 37 years served as participants.
One of the participants (E.M.P.) was an author, while the
other 4 were naïve. All had normal or corrected-to-normal
visual acuity, passed the Ishihara color vision test, and gave
informed consent.

Apparatus Stimuli were presented and responses gathered
on the same computers as in Experiment 1 for observers A.
M.S. and C.A.C., but A.T.M., C.M.B., and E.M.P. completed
the experiment on a 2-GHzAppleMac Pro computer driving a
17-in. (diagonal) Dell M991monitor at a resolution of 1,400 ×
1,050 pixels. The experiment was programmed using
MATLAB (version 7.5) and the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997).

Stimuli The same stimuli and timing parameters were
used as in Experiment 1. Only the attentional set size
manipulation was run, meaning that set sizes of 1, 2, 4,
and 8 were precued as in Experiment 1, and eight stimuli
were shown on every trial. Thus, any differences in
performance as a function of set size could be attributed
to attentional selection and not sensory differences
(Palmer, 1994).

As in Experiment 1, the level of visual noise was
manipulated by varying the percentage opacity of a uniform
noise field superimposed over the stimuli. Noise levels for
each stimulus type were determined separately for each
observer by a staircase procedure. Across the 5 participants,
the average noise levels were 67.5% (SD 3.5%) for the
orientation stimuli and 17% (SD 13%) for the “2” versus
“5” stimuli.

Procedure Observers completed several sessions of
training over 2–3 days before the experiment began. In
the first phase of training, each participant performed
several hundred trials of practice on the orientation and
“2” versus “5” stimuli separately, with no noise, until
they could consistently achieve greater than 90% correct
on a block of 100 trials. Next, the two stimulus sets
were randomly intermixed on a trial-by-trial basis, again
with no noise, until observers could consistently perform at
greater than 90% correct. Finally, the staircase procedure
described in Experiment 1 was run on the intermixed
stimulus sets to adjust the level of noise separately for the
orientation and “2” versus “5” stimuli. The overall visual
noise opacity for each stimulus set was independently
adjusted to yield performance of about 80% correct,
averaged across set sizes.

In the experimental phase, the stimuli were presented with
fixed noise opacity, as in Experiment 1. Data was collected in
four sessions. In each session, observers completed 50
practice trials and then 25 trials per cell (4 set sizes × 2
TP/TA × 2 stimuli), or 450 trials per session, with a
programmed break every 50 trials. Observers were only
allowed to complete two sessions per day, and data collection
was completed over 2–3 days. There were 1,600 experimen-
tal trials, but when combined with practice and training, each
observer completed over 2,400 trials in this experiment.

Results

Figure 5 plots performance by set size averaged across the
5 observers. The averaged performance of the 5 participants
showed a clear crossover interaction, with higher perfor-
mance on “2” versus “5” search than on orientation search
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Fig. 4 d' as a function of set size for Experiment 1. Physical set size
was changed in panel A, while an attentional cue was used to
manipulate set size in panel B. In both cases, the detectability
functions cross over each other, indicating that different decision rules

are necessary to account for performance on the two stimuli. Display
manipulation and search stimuli varied across blocks, while set size
varied within blocks. Error bars represent within-subjects confidence
intervals (Cousineau, 2005; Morey, 2008)
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at set size 1, but lower performance on “2” versus “5”
search at set sizes 4 and 8.

These observations were confirmed by the statistical
analyses. We performed a 2 × 4 (search stimuli × set size)
within-subjects ANOVA, which indicated that the main effect
of set size, F(3, 12) = 144.75, p < .001, ηp

2 = .97, and the
interaction of search stimuli by set size F(3, 12) = 10.513, p <
.01, ηp

2 = .72, were both significant. The main effect of search
stimuli was not significant (F = 6.13, p = .069, ηp

2 = .61),
indicating that our efforts to equalize the overall perceptibility
for the two sets of search stimuli were successful.

We performed a more detailed analysis of the critical
performance × set size crossover interaction via t tests between
the “2” versus “5” and orientation stimuli at each set size.
Those analyses indicated that overall performance was
reliably better for the “2” versus “5” search stimuli than
for the orientation stimuli at set size 1, t(8) = 2.71, p < .05, d =
1.77, performance was equivalent at set size 2, t(8) = 0.047,
p = .96, and performance on the “2” versus “5” stimuli was
reliably worse at set sizes 4, t(8) = 2.67, p < .05, d = 1.89,
and 8, t(8) = 2.76, p < .05, d = 1.95. As in the last
experiment, observers were significantly better at discrimi-
nating a “2” versus “5” at set size 1 but better at
discriminating a tilted from a vertical line at set sizes 4 and
8 (see note 2).

General discussion

The central finding of this article is that two-stage attention-
limited models survive a test carried out using signal

detection methods that have been more typically sup-
portive of one-stage noise-limited models. Two-stage
attention-limited models are required to predict that an
orientation feature search and a “2” versus “5” spatial
configuration search are constrained in different ways.
In the context of this experimental design, this means
that the two tasks behave as though operating under
different decision rules. When overall performance is
equated, this situation demands a crossover interaction
for the two functions that relates performance to set
size. Specifically, performance needed to be better for
the “2” versus “5” task at set size 1 and worse at set
size 8. This is what we observed.

This finding does not mean that one-stage noise-
limited models are necessarily incorrect. It would, however,
appear to falsify one-stage models with a single decision
rule for both of these tasks. If both tasks were being
performed under the same rule, the performance × set
size functions should have been identical, or at least
parallel, depending on whether or not we succeeded in
equating overall task difficulty. If “2” versus “5” perfor-
mance was better at set size 1, it should have remained
better at set size 8. Working within the one-stage noise-
limited framework, Davis et al. (2006) proposed that
multiple decision rules were at work; in this context, our
result highlights the fact that any one-stage noise-limited
model should specify a priori which decision rules apply to
which stimuli, even when the two search tasks are
intermixed.

Though the emphasis of this article has been on the
qualitative prediction of a crossover interaction, it is
possible to ask quantitative questions about the ability of
specific decision rules to explain the pattern of results. The
results of one such exercise can be found in the Appendix
to this article, which shows that an unlimited-capacity MAX

rule predicts performance data better from orientation
search than from “2” versus “5”. Additionally, the Appendix
presents individual data for the two experiments and the
details of the model fitting.

Discussions of the existence of capacity limitations in
visual search and whether one-stage or two-stage process
models are better at predicting human search performance
have often been hindered by methodological differences.
Experiments evaluating two-stage, attention-limited models
tend to use unlimited exposure durations and to gather RTs
as the dependent measure of interest, whereas experiments
evaluating one-stage, noise-limited models tend to use short
exposure durations and to gather accuracy as the primary
dependent measure. However, a useful theory of visual
search should be successful in both experimental domains.
We hope that the present effort to evaluate attention-limited
models of visual search using traditional noise-limited
methods will help promote a more productive exploration
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Fig. 5 d' as a function of set size for Experiment 2. Search stimuli
(“2” vs. “5” or orientation) and set size were randomly intermixed on
a trial-by-trial basis. Error bars represent within-subjects confidence
intervals (Cousineau, 2005; Morey, 2008)
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of the relative strengths and weaknesses of these two
approaches to understanding visual search.

Author Note The authors gratefully acknowledge funding for this
project from the National Institute of Mental Health (Grant MH56020
to J.M.W.) and the Air Force Office of Special Research (Grant
FA9550-06-1-0392 to J.M.W.).

Appendix

In the main text, we use the standard d' measure (Green &
Swets, 1966) to summarize accuracy in our visual search
task and to demonstrate the crossover interaction. Figure 1
demonstrates that d' is a valid measure for testing the
crossover prediction. In that figure, we plot d' from
performance predicted by MAX rule models with and without
capacity limits. The figure demonstrates that d' × set size
functions will cross over each other only under different
decision rules. Thus, we can use it to test for a change in
decision rules across different sets of search stimuli.

In this Appendix, we formally test our conclusions by
fitting different models of visual search to our data. We
demonstrate that, for most observers, an UNLIMITED-

CAPACITY MAX rule model explains performance with the
orientation stimuli, but a LIMITED-CAPACITY model is more
appropriate for the “2” versus “5” stimuli.

We used the MAX rule formula described by Palmer et al.
(1993), developing a version of it with a capacity limit. Under
this model, each distractor generates activation drawn from the
distribution F(x) = Φ(x), where Φ is the cumulative normal
distribution, while target activity is drawn from the distribution
GðxÞ ¼ F x� sð Þ ¼ Φ x� sð Þ, where s is the difference
between the target and distractor distributions (i.e., sensitivity).

The LIMITED-CAPACITYversion of the model selects k of the
n stimuli, where k is capacity and n is set size, and computes
the maximum value. If the maximum value is greater than a
criterion, c, then a target-present response is given; otherwise,
a target-absent response is given. Thus, a false alarm will
occur whenever any of the k selected distractors are greater
than c on a target-absent trial, so the false alarm rate will be

Pfalse alarm ¼ 1� FðcÞ½ �k : ðA1Þ

A hit will occur in one of two circumstances: when the
target is among the k sampled stimuli and either it or one of
the k – 1 distractors exceeds c, or when the target is not
sampled but one of the k distractors exceeds c (in the
equation below, we calculate 1 minus the opposite of this
probability). Thus, the hit rate will be

Phit ¼ 1� fPðt2KÞF c� sð Þ FðcÞ½ �k�1 þ Pðt =2 KÞ FðcÞ½ �kg;
ðA2Þ

where t ∈ K refers to when the target t is in K, the set of k
sampled stimuli, and t ∉ K is the opposite. We can calculate
the probability that t is not in K:

P t =2Kð Þ ¼
n�1
k

� �

n
k

� � ¼ n� k

n

Since Pðt 2 KÞ ¼ 1� Pðt =2 KÞ, we can express Eq. A2
as follows:

Phit ¼ 1� k

n
F c� sð Þ FðcÞ½ �k�1 þ n� k

n
FðcÞ½ �k

� �
:

ðA3Þ
Note that when capacity is unlimited, k = n, and Eqs. A1

and A3 reduce to the unlimited-capacity max-rule model
derived by Palmer et al. (1993, Eq. A9).

First, we fit both UNLIMITED-CAPACITY and LIMITED-

CAPACITY versions of Eqs. A1 and A3 to each observer’s
results from Experiments 1 and 2. We treated s (sensitivity)
and c (criterion) as free parameters, allowing both to vary
across observers and stimulus sets, and allowing c only to
vary across set size. We estimated the best-fitting parameter
values using maximum likelihood. For the UNLIMITED-

CAPACITY model, we fixed k = n. For the LIMITED-CAPACITY

model, we treated k as a free parameter, allowing it to vary
across observers and stimulus sets, but not set size.

Figure 6 plots the model fits against the observed data
for both Experiments 1 and 2. The first column for each
experiment shows the results from orientation search, along
with the fit of the UNLIMITED-CAPACITY model; adding the
capacity parameter did not improve the fit (the fits were
identical), so that model is not shown. The second column
of each experiment includes the results of the “2” versus
“5” search with the predictions of the UNLIMITED-CAPACITY

model. The third column in each graph plots the same
results with the predictions of the LIMITED-CAPACITY model.
To illustrate the quality of each model’s predictions, we
calculated Akaike’s information criterion (AIC; Burnham &
Anderson, 2002) for each model fit and included it in each
plot. AIC measures the goodness of fit of a model to
observed data, accounting for the number of free parameters
in the model. Lower values of AIC indicate a better fit.

To formally test the goodness of fit of each model, we
conducted generalized likelihood ratio tests (GLRTs) com-
paring the fits of the UNLIMITED-CAPACITY and LIMITED-

CAPACITY models. In essence, the GLRT indicates whether
the addition of the capacity parameter reliably improves the
model fit. Table 1 reports the GLRT results for each
observer under each set of search stimuli. For the
orientation search, the UNLIMITED-CAPACITY model fit best
for all but 1 of the observers across the two experiments.
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Fig. 6 Hit rates (squares) and false alarm rates (circles) for Experi-
ments 1 and 2 for all observers. For each experiment, the left column
of graphs shows data for orientation feature search, which is well fit
by the UNLIMITED-CAPACITY MAX model (solid lines). The middle
column shows data from the spatial configuration “2” versus “5”
experiment, UNLIMITED-CAPACITY MAX model fits. The right column

shows the same “2” versus “5” data, but fit with a LIMITED-CAPACITY

MAX model (dashed lines). The Akaike information criterion (AIC) for
each graph is reported in the lower right. Lower AIC scores indicate a
better fit of the model to the data. For 9 of the 10 observers, the
LIMITED-CAPACITY model fit the “2” versus “5” data better than the
UNLIMITED-CAPACITY MAX model
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However, for the “2” versus “5” search, the LIMITED-CAPACITY

model fit best for all but 1 observer. Thus, the UNLIMITED-

CAPACITY model appears to explain performance on the
orientation search task, but the LIMITED-CAPACITY model is
better for the “2” versus “5” search task.

We also investigated the usefulness of varying criterion with
set size. In most cases, the model with variable criterion
provided a reliably better fit. The only exceptions were subjects
A.M.S. and C.A.C. in the “2” versus “5” condition of
Experiment 2. However, in both cases, the LIMITED-CAPACITY

model was still a better fit than the UNLIMITED-CAPACITY model,
even when the criterion was held constant across set size.

In summary, the data and arguments from the main article
show that averaged d' × set size functions for orientation and
“2” versus “5” searches produce a crossover interaction,
indicating that different decision rules are engaged by the
different stimulus sets. The detailed modeling reported in this
Appendix shows that orientation feature search data are
captured quite well by an UNLIMITED-CAPACITY MAX decision

rule, but “2” versus “5” spatial configuration search data are
not. Rather, “2” versus “5” spatial configuration search data are
better described by a LIMITED-CAPACITY decision rule.
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